BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28130443)

  • 1. Na
    Beydoun R; Hamood MA; Gomez Zubieta DM; Kondapalli KC
    J Biol Chem; 2017 Mar; 292(10):4293-4301. PubMed ID: 28130443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gain of function paradox: Targeted therapy for glioblastoma associated with abnormal NHE9 expression.
    Pall AE; Juratli L; Guntur D; Bandyopadhyay K; Kondapalli KC
    J Cell Mol Med; 2019 Nov; 23(11):7859-7872. PubMed ID: 31532058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-135a regulates NHE9 to inhibit proliferation and migration of glioblastoma cells.
    Gomez Zubieta DM; Hamood MA; Beydoun R; Pall AE; Kondapalli KC
    Cell Commun Signal; 2017 Dec; 15(1):55. PubMed ID: 29268774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional evaluation of autism-associated mutations in NHE9.
    Kondapalli KC; Hack A; Schushan M; Landau M; Ben-Tal N; Rao R
    Nat Commun; 2013; 4():2510. PubMed ID: 24065030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sodium proton exchanger NHE9 regulates phagosome maturation and bactericidal activity in macrophages.
    Shamroukh HS; Lone N; Akhtar M; Altayib A; Sutliff S; Kassem Z; Tripathy SK; Kondapalli KC
    J Biol Chem; 2022 Aug; 298(8):102150. PubMed ID: 35716776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory mechanisms for iron transport across the blood-brain barrier.
    Duck KA; Simpson IA; Connor JR
    Biochem Biophys Res Commun; 2017 Dec; 494(1-2):70-75. PubMed ID: 29054412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial cells are critical regulators of iron transport in a model of the human blood-brain barrier.
    Chiou B; Neal EH; Bowman AB; Lippmann ES; Simpson IA; Connor JR
    J Cereb Blood Flow Metab; 2019 Nov; 39(11):2117-2131. PubMed ID: 29911470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of Na
    Prasad H; Osei-Owusu J; Rao R
    Matters (Zur); 2017 Apr; 2017():. PubMed ID: 28815171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells.
    McCarthy RC; Kosman DJ
    PLoS One; 2014; 9(2):e89003. PubMed ID: 24533165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain iron homeostasis.
    Moos T
    Dan Med Bull; 2002 Nov; 49(4):279-301. PubMed ID: 12553165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic analysis of iron accumulation by endothelial cells of the BBB.
    McCarthy RC; Kosman DJ
    Biometals; 2012 Aug; 25(4):665-75. PubMed ID: 22434419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging links between endosomal pH and cancer.
    Ko M; Quiñones-Hinojosa A; Rao R
    Cancer Metastasis Rev; 2020 Jun; 39(2):519-534. PubMed ID: 32253638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain iron transport.
    Qian ZM; Ke Y
    Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1672-1684. PubMed ID: 31190441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Na+/H+ exchanger NHE6 modulates endosomal pH to control processing of amyloid precursor protein in a cell culture model of Alzheimer disease.
    Prasad H; Rao R
    J Biol Chem; 2015 Feb; 290(9):5311-27. PubMed ID: 25561733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms and regulation of transferrin and iron transport in a model blood-brain barrier system.
    Burdo JR; Antonetti DA; Wolpert EB; Connor JR
    Neuroscience; 2003; 121(4):883-90. PubMed ID: 14580938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired regulation of pH homeostasis by oxidative stress in rat brain capillary endothelial cells.
    Sipos H; Törocsik B; Tretter L; Adam-Vizi V
    Cell Mol Neurobiol; 2005 Feb; 25(1):141-51. PubMed ID: 15962511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor.
    Broadwell RD; Baker-Cairns BJ; Friden PM; Oliver C; Villegas JC
    Exp Neurol; 1996 Nov; 142(1):47-65. PubMed ID: 8912898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9.
    Winklemann I; Matsuoka R; Meier PF; Shutin D; Zhang C; Orellana L; Sexton R; Landreh M; Robinson CV; Beckstein O; Drew D
    EMBO J; 2020 Dec; 39(24):e105908. PubMed ID: 33118634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Christianson syndrome-linked deletion mutation (∆(287)ES(288)) in SLC9A6 disrupts recycling endosomal function and elicits neurodegeneration and cell death.
    Ilie A; Gao AY; Reid J; Boucher A; McEwan C; Barrière H; Lukacs GL; McKinney RA; Orlowski J
    Mol Neurodegener; 2016 Sep; 11(1):63. PubMed ID: 27590723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell surface levels of organellar Na+/H+ exchanger isoform 6 are regulated by interaction with RACK1.
    Ohgaki R; Fukura N; Matsushita M; Mitsui K; Kanazawa H
    J Biol Chem; 2008 Feb; 283(7):4417-29. PubMed ID: 18057008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.