These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
563 related articles for article (PubMed ID: 28130490)
1. Duplication of Sato A; Suematsu T; Aihara KK; Kita K; Suzuki T; Watanabe K; Ohtsuki T; Watanabe YI Biochem J; 2017 Mar; 474(6):957-969. PubMed ID: 28130490 [TBL] [Abstract][Full Text] [Related]
2. An evolutionary 'intermediate state' of mitochondrial translation systems found in Trichinella species of parasitic nematodes: co-evolution of tRNA and EF-Tu. Arita M; Suematsu T; Osanai A; Inaba T; Kamiya H; Kita K; Sisido M; Watanabe Y; Ohtsuki T Nucleic Acids Res; 2006; 34(18):5291-9. PubMed ID: 17012285 [TBL] [Abstract][Full Text] [Related]
3. A protein extension to shorten RNA: elongated elongation factor-Tu recognizes the D-arm of T-armless tRNAs in nematode mitochondria. Sakurai M; Watanabe Y; Watanabe K; Ohtsuki T Biochem J; 2006 Oct; 399(2):249-56. PubMed ID: 16859488 [TBL] [Abstract][Full Text] [Related]
4. A unique serine-specific elongation factor Tu found in nematode mitochondria. Ohtsuki T; Sato A; Watanabe Y; Watanabe K Nat Struct Biol; 2002 Sep; 9(9):669-73. PubMed ID: 12145639 [TBL] [Abstract][Full Text] [Related]
5. A unique tRNA recognition mechanism of Caenorhabditis elegans mitochondrial EF-Tu2. Suematsu T; Sato A; Sakurai M; Watanabe K; Ohtsuki T Nucleic Acids Res; 2005; 33(15):4683-91. PubMed ID: 16113240 [TBL] [Abstract][Full Text] [Related]
7. Identification of the residues involved in the unique serine specificity of Caenorhabditis elegans mitochondrial EF-Tu2. Sato A; Watanabe Y; Suzuki T; Komiyama M; Watanabe K; Ohtsuki T Biochemistry; 2006 Sep; 45(36):10920-7. PubMed ID: 16953577 [TBL] [Abstract][Full Text] [Related]
8. An "elongated" translation elongation factor Tu for truncated tRNAs in nematode mitochondria. Ohtsuki T; Watanabe Yi ; Takemoto C; Kawai G; Ueda T; Kita K; Kojima S; Kaziro Y; Nyborg J; Watanabe K J Biol Chem; 2001 Jun; 276(24):21571-7. PubMed ID: 11262399 [TBL] [Abstract][Full Text] [Related]
9. Mutagenesis of Arg335 in bovine mitochondrial elongation factor Tu and the corresponding residue in the Escherichia coli factor affects interactions with mitochondrial aminoacyl-tRNAs. Hunter SE; Spremulli LL RNA Biol; 2004 Jul; 1(2):95-102. PubMed ID: 17179748 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the interaction between the nucleotide exchange factor EF-Ts from nematode mitochondria and elongation factor Tu. Ohtsuki T; Sakurai M; Sato A; Watanabe K Nucleic Acids Res; 2002 Dec; 30(24):5444-51. PubMed ID: 12490713 [TBL] [Abstract][Full Text] [Related]
11. Effects of mutagenesis of residue 221 on the properties of bacterial and mitochondrial elongation factor EF-Tu. Hunter SE; Spremulli LL Biochim Biophys Acta; 2004 Jun; 1699(1-2):173-82. PubMed ID: 15158725 [TBL] [Abstract][Full Text] [Related]
12. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity. Hunter SE; Spremulli LL Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329 [TBL] [Abstract][Full Text] [Related]
13. Uniform affinity-tuning of N-methyl-aminoacyl-tRNAs to EF-Tu enhances their multiple incorporation. Iwane Y; Kimura H; Katoh T; Suga H Nucleic Acids Res; 2021 Nov; 49(19):10807-10817. PubMed ID: 33997906 [TBL] [Abstract][Full Text] [Related]
14. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA. Navratil T; Spremulli LL Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005 [TBL] [Abstract][Full Text] [Related]
15. Tuning the affinity of aminoacyl-tRNA to elongation factor Tu for optimal decoding. Schrader JM; Chapman SJ; Uhlenbeck OC Proc Natl Acad Sci U S A; 2011 Mar; 108(13):5215-20. PubMed ID: 21402928 [TBL] [Abstract][Full Text] [Related]
16. Aminoacyl-tRNA surveillance by EF-Tu in mammalian mitochondria. Nagao A; Suzuki T; Suzuki T Nucleic Acids Symp Ser (Oxf); 2007; (51):41-2. PubMed ID: 18029576 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the functional consequences of lethal mutations in mitochondrial translational elongation factors. Akama K; Christian BE; Jones CN; Ueda T; Takeuchi N; Spremulli LL Biochim Biophys Acta; 2010; 1802(7-8):692-8. PubMed ID: 20435138 [TBL] [Abstract][Full Text] [Related]
19. Conserved discrimination against misacylated tRNAs by two mesophilic elongation factor Tu orthologs. Cathopoulis TJ; Chuawong P; Hendrickson TL Biochemistry; 2008 Jul; 47(29):7610-6. PubMed ID: 18627126 [TBL] [Abstract][Full Text] [Related]
20. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. LaRiviere FJ; Wolfson AD; Uhlenbeck OC Science; 2001 Oct; 294(5540):165-8. PubMed ID: 11588263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]