These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 28130571)
1. Gaussian approximations for chemostat models in finite and infinite dimensions. Cloez B; Fritsch C J Math Biol; 2017 Oct; 75(4):805-843. PubMed ID: 28130571 [TBL] [Abstract][Full Text] [Related]
2. Laws of large numbers and langevin approximations for stochastic neural field equations. Riedler MG; Buckwar E J Math Neurosci; 2013 Jan; 3(1):1. PubMed ID: 23343328 [TBL] [Abstract][Full Text] [Related]
3. Approximations of Cumulants of the Stochastic Power Law Logistic Model. Nåsell I Bull Math Biol; 2020 Jan; 82(2):19. PubMed ID: 31970522 [TBL] [Abstract][Full Text] [Related]
4. Stochastic Dynamics of Eukaryotic Flagellar Growth. Rathinam M; Sverchkov Y Bull Math Biol; 2019 Aug; 81(8):2849-2872. PubMed ID: 29644519 [TBL] [Abstract][Full Text] [Related]
5. Competition in chemostat-type equations with two habitats. Nakaoka S; Takeuchi Y Math Biosci; 2006 May; 201(1-2):157-71. PubMed ID: 16448673 [TBL] [Abstract][Full Text] [Related]
6. A stoichiometric organic matter decomposition model in a chemostat culture. Kong JD; Salceanu P; Wang H J Math Biol; 2018 Feb; 76(3):609-644. PubMed ID: 28664221 [TBL] [Abstract][Full Text] [Related]
7. A simple unforced oscillatory growth model in the chemostat. Lemesle V; Gouzé JL Bull Math Biol; 2008 Feb; 70(2):344-57. PubMed ID: 17912591 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic Inhibition in Chemostat Models : With an Application to Bioreduction of Uranium. Gaebler HJ; Eberl HJ Bull Math Biol; 2020 Jun; 82(6):76. PubMed ID: 32535693 [TBL] [Abstract][Full Text] [Related]
9. Transient and stationary characteristics of the Malthus-Verhulst-Bernoulli model with non-Gaussian fluctuating parameters. Dubkov AA; Kharcheva AA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052146. PubMed ID: 25353778 [TBL] [Abstract][Full Text] [Related]
10. Coexistence in the chemostat as a result of metabolic by-products. Hesseler J; Schmidt JK; Reichl U; Flockerzi D J Math Biol; 2006 Oct; 53(4):556-84. PubMed ID: 16819650 [TBL] [Abstract][Full Text] [Related]
11. Resistance to antibiotics: limit theorems for a stochastic SIS model structured by level of resistance. Boëlle PY; Thomas G J Math Biol; 2016 Dec; 73(6-7):1353-1378. PubMed ID: 27032641 [TBL] [Abstract][Full Text] [Related]
12. Plasmid-bearing, plasmid-free organisms competing for two complementary nutrients in a chemostat. Hsu SB; Tzeng YH Math Biosci; 2002; 179(2):183-206. PubMed ID: 12208615 [TBL] [Abstract][Full Text] [Related]
13. Slow-fast stochastic diffusion dynamics and quasi-stationarity for diploid populations with varying size. Coron C J Math Biol; 2016 Jan; 72(1-2):171-202. PubMed ID: 25840519 [TBL] [Abstract][Full Text] [Related]
14. Solving the chemical master equation by a fast adaptive finite state projection based on the stochastic simulation algorithm. Sidje RB; Vo HD Math Biosci; 2015 Nov; 269():10-6. PubMed ID: 26319118 [TBL] [Abstract][Full Text] [Related]
15. [Developing the control criterion for continuous culture of microorganisms]. Adamovich VV; Rogozin DIu; Degermendzhi AG Mikrobiologiia; 2005; 74(1):5-16. PubMed ID: 15835773 [TBL] [Abstract][Full Text] [Related]
16. Moment expansions in spatial ecological models and moment closure through Gaussian approximation. Gandhi A; Levin S; Orszag S Bull Math Biol; 2000 Jul; 62(4):595-632. PubMed ID: 10938625 [TBL] [Abstract][Full Text] [Related]
17. Calculation of fermentation parameters from the results of a batch test taking account of the volume of biomass in the fermenting medium. Borzani W Biotechnol Lett; 2003 Nov; 25(22):1953-6. PubMed ID: 14719833 [TBL] [Abstract][Full Text] [Related]
18. Delayed feedback control for a chemostat model. Tagashira O; Hara T Math Biosci; 2006 May; 201(1-2):101-12. PubMed ID: 16472826 [TBL] [Abstract][Full Text] [Related]
19. Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces. Geiersbach C; Scarinci T Comput Optim Appl; 2021; 78(3):705-740. PubMed ID: 33707813 [TBL] [Abstract][Full Text] [Related]
20. Gaussian equilibration. Venuti LC; Zanardi P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012106. PubMed ID: 23410282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]