These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28130701)

  • 1. Time Dependent Behaviour of Trabecular Bone at Multiple Load Levels.
    Xie S; Manda K; Wallace RJ; Levrero-Florencio F; Simpson AHRW; Pankaj P
    Ann Biomed Eng; 2017 May; 45(5):1219-1226. PubMed ID: 28130701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear viscoelastic characterization of bovine trabecular bone.
    Manda K; Wallace RJ; Xie S; Levrero-Florencio F; Pankaj P
    Biomech Model Mechanobiol; 2017 Feb; 16(1):173-189. PubMed ID: 27440127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-dependent circumferential deformation of cortical bone upon internal radial loading.
    Brown CU; Norman TL; Kish VL; Gruen TA; Blaha JD
    J Biomech Eng; 2002 Aug; 124(4):456-61. PubMed ID: 12188212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent behaviour of demineralised trabecular bone - Experimental investigation and development of a constitutive model.
    Xie S; Wallace RJ; Pankaj P
    J Mech Behav Biomed Mater; 2020 Sep; 109():103751. PubMed ID: 32347212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creep contributes to the fatigue behavior of bovine trabecular bone.
    Bowman SM; Guo XE; Cheng DW; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech Eng; 1998 Oct; 120(5):647-54. PubMed ID: 10412444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressive creep behavior of bovine trabecular bone.
    Bowman SM; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech; 1994 Mar; 27(3):301-10. PubMed ID: 8051190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability of tissue mineral density can determine physiological creep of human vertebral cancellous bone.
    Kim DG; Shertok D; Ching Tee B; Yeni YN
    J Biomech; 2011 Jun; 44(9):1660-5. PubMed ID: 21481880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone.
    Manda K; Xie S; Wallace RJ; Levrero-Florencio F; Pankaj P
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1631-1640. PubMed ID: 27090522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels.
    Yamamoto E; Paul Crawford R; Chan DD; Keaveny TM
    J Biomech; 2006; 39(10):1812-8. PubMed ID: 16038915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creep of trabecular bone from the human proximal tibia.
    Novitskaya E; Zin C; Chang N; Cory E; Chen P; D'Lima D; Sah RL; McKittrick J
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():219-27. PubMed ID: 24857486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creep does not contribute to fatigue in bovine trabecular bone.
    Moore TL; O'Brien FJ; Gibson LJ
    J Biomech Eng; 2004 Jun; 126(3):321-9. PubMed ID: 15341168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Results from demineralized bone creep tests suggest that collagen is responsible for the creep behavior of bone.
    Bowman SM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech Eng; 1999 Apr; 121(2):253-8. PubMed ID: 10211462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
    Gao LL; Wei CL; Zhang CQ; Gao H; Yang N; Dong LM
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1050-1059. PubMed ID: 28531978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trabecular bone contributes to strength of the proximal femur under mediolateral impact in the avian.
    Passi N; Gefen A
    J Biomech Eng; 2005 Feb; 127(1):198-203. PubMed ID: 15868803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship of the compressive modulus of articular cartilage with its deformation response to cyclic loading: does cartilage optimize its modulus so as to minimize the strains arising in it due to the prevalent loading regime?
    Barker MK; Seedhom BB
    Rheumatology (Oxford); 2001 Mar; 40(3):274-84. PubMed ID: 11285374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of X-ray irradiation on the elastic strain evolution in the mineral phase of bovine bone under creep and load-free conditions.
    Deymier-Black AC; Singhal A; Almer JD; Dunand DC
    Acta Biomater; 2013 Feb; 9(2):5305-12. PubMed ID: 22871638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of torsional loading on compressive fatigue behaviour of trabecular bone.
    Fatihhi SJ; Rabiatul AA; Harun MN; Kadir MR; Kamarul T; Syahrom A
    J Mech Behav Biomed Mater; 2016 Feb; 54():21-32. PubMed ID: 26410762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inelastic strain accumulation in cortical bone during rapid transient tensile loading.
    Fondrk MT; Bahniuk EH; Davy DT
    J Biomech Eng; 1999 Dec; 121(6):616-21. PubMed ID: 10633262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelasticity of Tendons Under Transverse Compression.
    Paul Buckley C; Samuel Salisbury ST; Zavatsky AB
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27496279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture.
    Lotz JC; Cheal EJ; Hayes WC
    Osteoporos Int; 1995; 5(4):252-61. PubMed ID: 7492864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.