These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
601 related articles for article (PubMed ID: 28130773)
21. Fighting trafficking of falsified and substandard medicinal products in Russia. Fayzrakhmanov NF Int J Risk Saf Med; 2015; 27 Suppl 1():S37-40. PubMed ID: 26639702 [TBL] [Abstract][Full Text] [Related]
22. Sorting Through the Safety Data Haystack: Using Machine Learning to Identify Individual Case Safety Reports in Social-Digital Media. Comfort S; Perera S; Hudson Z; Dorrell D; Meireis S; Nagarajan M; Ramakrishnan C; Fine J Drug Saf; 2018 Jun; 41(6):579-590. PubMed ID: 29446035 [TBL] [Abstract][Full Text] [Related]
23. Statistical Signal Detection Algorithm in Safety Data: A Proprietary Method Compared to Industry Standard Methods. Bastos E; Allen JK; Philip J Pharmaceut Med; 2024 Jul; 38(4):321-329. PubMed ID: 39003400 [TBL] [Abstract][Full Text] [Related]
24. Adverse Drug Reaction Reporting in Africa and a Comparison of Individual Case Safety Report Characteristics Between Africa and the Rest of the World: Analyses of Spontaneous Reports in VigiBase®. Ampadu HH; Hoekman J; de Bruin ML; Pal SN; Olsson S; Sartori D; Leufkens HG; Dodoo AN Drug Saf; 2016 Apr; 39(4):335-45. PubMed ID: 26754924 [TBL] [Abstract][Full Text] [Related]
25. Towards Automating Adverse Event Review: A Prediction Model for Case Report Utility. Muñoz MA; Dal Pan GJ; Wei YJ; Delcher C; Xiao H; Kortepeter CM; Winterstein AG Drug Saf; 2020 Apr; 43(4):329-338. PubMed ID: 31912439 [TBL] [Abstract][Full Text] [Related]
26. Application of an empiric Bayesian data mining algorithm to reports of pancreatitis associated with atypical antipsychotics. Hauben M Pharmacotherapy; 2004 Sep; 24(9):1122-9. PubMed ID: 15460172 [TBL] [Abstract][Full Text] [Related]
27. Analysis of the nervous system and gastrointestinal adverse events associated with solifenacin in older adults using the US FDA adverse event reporting system. Nicholls C; Chyou TY; Nishtala PS Int J Risk Saf Med; 2023; 34(1):63-73. PubMed ID: 35491805 [TBL] [Abstract][Full Text] [Related]
28. Adverse events with sodium-glucose co-transporter-2 inhibitors: A global analysis of international spontaneous reporting systems. Raschi E; Parisotto M; Forcesi E; La Placa M; Marchesini G; De Ponti F; Poluzzi E Nutr Metab Cardiovasc Dis; 2017 Dec; 27(12):1098-1107. PubMed ID: 29174026 [TBL] [Abstract][Full Text] [Related]
29. Comparative performance of two quantitative safety signalling methods: implications for use in a pharmacovigilance department. Almenoff JS; LaCroix KK; Yuen NA; Fram D; DuMouchel W Drug Saf; 2006; 29(10):875-87. PubMed ID: 16970511 [TBL] [Abstract][Full Text] [Related]
30. Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions. Hauben M; Horn S; Reich L Drug Saf; 2007; 30(2):143-55. PubMed ID: 17253879 [TBL] [Abstract][Full Text] [Related]
31. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA's spontaneous reports database. Szarfman A; Machado SG; O'Neill RT Drug Saf; 2002; 25(6):381-92. PubMed ID: 12071774 [TBL] [Abstract][Full Text] [Related]
32. Disproportionality Analysis for Pharmacovigilance Signal Detection in Small Databases or Subsets: Recommendations for Limiting False-Positive Associations. Caster O; Aoki Y; Gattepaille LM; Grundmark B Drug Saf; 2020 May; 43(5):479-487. PubMed ID: 32008183 [TBL] [Abstract][Full Text] [Related]
33. Statistical and graphical approaches for disproportionality analysis of spontaneously-reported adverse events in pharmacovigilance. Zink RC; Huang Q; Zhang LY; Bao WJ Chin J Nat Med; 2013 May; 11(3):314-20. PubMed ID: 23725848 [TBL] [Abstract][Full Text] [Related]
34. A prediction model-based algorithm for computer-assisted database screening of adverse drug reactions in the Netherlands. Scholl JHG; van Hunsel FPAM; Hak E; van Puijenbroek EP Pharmacoepidemiol Drug Saf; 2018 Feb; 27(2):199-205. PubMed ID: 29271017 [TBL] [Abstract][Full Text] [Related]
35. Risk Factor Considerations in Statistical Signal Detection: Using Subgroup Disproportionality to Uncover Risk Groups for Adverse Drug Reactions in VigiBase. Sandberg L; Taavola H; Aoki Y; Chandler R; Norén GN Drug Saf; 2020 Oct; 43(10):999-1009. PubMed ID: 32564242 [TBL] [Abstract][Full Text] [Related]
36. Monitoring the manufacturing and quality of medicines: a fundamental task of pharmacovigilance. Sardella M; Belcher G; Lungu C; Ignoni T; Camisa M; Stenver DI; Porcelli P; D'Antuono M; Castiglione NG; Adams A; Furlan G; Grisoni I; Hall S; Boga L; Mancini V; Ciuca M; Chonzi D; Edwards B; Mangoni AA; Tuccori M; Prokofyeva E; De Gregorio F; Bertazzoli Grabinski Broglio M; van Leeuwen B; Kruger P; Rausch C; Le Louet H Ther Adv Drug Saf; 2021; 12():20420986211038436. PubMed ID: 34394910 [TBL] [Abstract][Full Text] [Related]
37. An analysis of the trends, characteristics, scope, and performance of the Zimbabwean pharmacovigilance reporting scheme. Masuka JT; Khoza S Pharmacol Res Perspect; 2020 Oct; 8(5):e00657. PubMed ID: 32930524 [TBL] [Abstract][Full Text] [Related]
39. Safety Concerns Reported by Patients Identified in a Collaborative Signal Detection Workshop using VigiBase: Results and Reflections from Lareb and Uppsala Monitoring Centre. Watson S; Chandler RE; Taavola H; Härmark L; Grundmark B; Zekarias A; Star K; van Hunsel F Drug Saf; 2018 Feb; 41(2):203-212. PubMed ID: 28933055 [TBL] [Abstract][Full Text] [Related]
40. A real-world disproportionality analysis of FDA Adverse Event Reporting System (FAERS) events for baricitinib. Peng L; Xiao K; Ottaviani S; Stebbing J; Wang YJ Expert Opin Drug Saf; 2020 Nov; 19(11):1505-1511. PubMed ID: 32693646 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]