These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28130780)

  • 1. Membrane insertion of fusion peptides from Ebola and Marburg viruses studied by replica-exchange molecular dynamics simulations.
    Olson MA; Lee MS; Yeh IC
    J Comput Chem; 2017 Jun; 38(16):1342-1352. PubMed ID: 28130780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of flanking residues on the conformational sampling of the internal fusion peptide from Ebola virus.
    Jaskierny AJ; Panahi A; Feig M
    Proteins; 2011 Apr; 79(4):1109-17. PubMed ID: 21246633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the Ebola fusion peptide in a membrane-mimetic environment and the interaction with lipid rafts.
    Freitas MS; Gaspar LP; Lorenzoni M; Almeida FCL; Tinoco LW; Almeida MS; Maia LF; Degrève L; Valente AP; Silva JL
    J Biol Chem; 2007 Sep; 282(37):27306-27314. PubMed ID: 17545161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and orientation study of Ebola fusion peptide inserted in lipid membrane models.
    Agopian A; Castano S
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):117-26. PubMed ID: 24055820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding is not required for bilayer insertion: replica exchange simulations of an alpha-helical peptide with an explicit lipid bilayer.
    Nymeyer H; Woolf TB; Garcia AE
    Proteins; 2005 Jun; 59(4):783-90. PubMed ID: 15828005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel Tempering of Dark Matter from the Ebola Virus Proteome: Comparison of CHARMM36m and CHARMM22 Force Fields with Implicit Solvent.
    Olson MA
    J Chem Inf Model; 2018 Jan; 58(1):111-118. PubMed ID: 29185737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations.
    Im W; Brooks CL
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6771-6. PubMed ID: 15860587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural dynamics of the flavivirus fusion peptide-membrane interaction.
    Mendes YS; Alves NS; Souza TL; Sousa IP; Bianconi ML; Bernardi RC; Pascutti PG; Silva JL; Gomes AM; Oliveira AC
    PLoS One; 2012; 7(10):e47596. PubMed ID: 23094066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and thermodynamics characters of isolated α-syn12 peptide: long-time temperature replica-exchange molecular dynamics in aqueous solution.
    Cao Z; Liu L; Wu P; Wang J
    Acta Biochim Biophys Sin (Shanghai); 2011 Mar; 43(3):172-80. PubMed ID: 21289072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of a design peptide between the α-helix and β-hairpin structures using a helix-strand replica-exchange molecular dynamics simulation.
    Okumura H; Itoh SG
    Phys Chem Chem Phys; 2013 Sep; 15(33):13852-61. PubMed ID: 23839056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periplasmic Nanobody-APEX2 Fusions Enable Facile Visualization of Ebola, Marburg, and Mĕnglà virus Nucleoproteins, Alluding to Similar Antigenic Landscapes among
    Sherwood LJ; Hayhurst A
    Viruses; 2019 Apr; 11(4):. PubMed ID: 31010013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single mutation effects on conformational change and membrane deformation of influenza hemagglutinin fusion peptides.
    Li J; Das P; Zhou R
    J Phys Chem B; 2010 Jul; 114(26):8799-806. PubMed ID: 20552971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-dependent conformational changes of membrane-bound Ebola fusion peptide drive vesicle fusion.
    Suárez T; Gómara MJ; Goñi FM; Mingarro I; Muga A; Pérez-Payá E; Nieva JL
    FEBS Lett; 2003 Jan; 535(1-3):23-8. PubMed ID: 12560072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular architecture of the nucleoprotein C-terminal domain from the Ebola and Marburg viruses.
    Baker LE; Ellena JF; Handing KB; Derewenda U; Utepbergenov D; Engel DA; Derewenda ZS
    Acta Crystallogr D Struct Biol; 2016 Jan; 72(Pt 1):49-58. PubMed ID: 26894534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding thermodynamics of β-hairpins studied by replica-exchange molecular dynamics simulations.
    Zerze GH; Uz B; Mittal J
    Proteins; 2015 Jul; 83(7):1307-15. PubMed ID: 25973961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on viral fusion peptides: the distribution of lipophilic and electrostatic potential over the peptide determines the angle of insertion into a membrane.
    Taylor A; Sansom MS
    Eur Biophys J; 2010 Oct; 39(11):1537-45. PubMed ID: 20499059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation of partitioning of ten pentapeptides Ace-WLXLL at the cyclohexane/water and phospholipid/water interfaces.
    Aliste MP; Tieleman DP
    BMC Biochem; 2005 Dec; 6():30. PubMed ID: 16368010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome.
    Olson MA
    Front Mol Biosci; 2017; 4():3. PubMed ID: 28197405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly molecular dynamics simulations shed light into the interaction of the influenza fusion Peptide with a membrane bilayer.
    Victor BL; Lousa D; Antunes JM; Soares CM
    J Chem Inf Model; 2015 Apr; 55(4):795-805. PubMed ID: 25826469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.