These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 28130878)
1. Development of an electrospun biomimetic polyurea scaffold suitable for vascular grafting. Madhavan K; Frid MG; Hunter K; Shandas R; Stenmark KR; Park D J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):278-290. PubMed ID: 28130878 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic poly(serinol hexamethylene urea) for promotion of neurite outgrowth and guidance. Yun D; Famili A; Lee YM; Jenkins PM; Freed CR; Park D J Biomater Sci Polym Ed; 2014; 25(4):354-69. PubMed ID: 24279744 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and characterization of electrospun polycaprolactone and gelatin composite cuffs for tissue engineered blood vessels. Strobel HA; Calamari EL; Beliveau A; Jain A; Rolle MW J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):817-826. PubMed ID: 28383795 [TBL] [Abstract][Full Text] [Related]
4. The penetration and phenotype modulation of smooth muscle cells on surface heparin modified poly(ɛ-caprolactone) vascular scaffold. Cao J; Geng X; Wen J; Li Q; Ye L; Zhang A; Feng Z; Guo L; Gu Y J Biomed Mater Res A; 2017 Oct; 105(10):2806-2815. PubMed ID: 28643432 [TBL] [Abstract][Full Text] [Related]
5. Effects of pulsatile bioreactor culture on vascular smooth muscle cells seeded on electrospun poly (lactide-co-ε-caprolactone) scaffold. Mun CH; Jung Y; Kim SH; Kim HC; Kim SH Artif Organs; 2013 Dec; 37(12):E168-78. PubMed ID: 23834728 [TBL] [Abstract][Full Text] [Related]
6. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Hong Y; Guan J; Fujimoto KL; Hashizume R; Pelinescu AL; Wagner WR Biomaterials; 2010 May; 31(15):4249-58. PubMed ID: 20188411 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of a bilayer scaffold for small diameter vascular applications. Goins A; Ramaswamy V; Lichlyter D; Webb A; Allen JB J Biomed Mater Res A; 2018 Nov; 106(11):2850-2862. PubMed ID: 30194900 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic microstructural reorganization during suture retention strength evaluation of electrospun vascular scaffolds. Chaparro FJ; Matusicky ME; Allen MJ; Lannutti JJ J Biomed Mater Res B Appl Biomater; 2016 Nov; 104(8):1525-1534. PubMed ID: 26256447 [TBL] [Abstract][Full Text] [Related]
9. The regeneration of macro-porous electrospun poly(ɛ-caprolactone) vascular graft during long-term in situ implantation. Wu Y; Qin Y; Wang Z; Wang J; Zhang C; Li C; Kong D J Biomed Mater Res B Appl Biomater; 2018 May; 106(4):1618-1627. PubMed ID: 28834076 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites. Chan JP; Battiston KG; Santerre JP Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of a mechanically anisotropic poly(glycerol sebacate) membrane for tissue engineering. Hsu CN; Lee PY; Tuan-Mu HY; Li CY; Hu JJ J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):760-770. PubMed ID: 28346743 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic dual-oriented/bilayered electrospun scaffold for vascular tissue engineering. Li X; Huang L; Li L; Tang Y; Liu Q; Xie H; Tian J; Zhou S; Tang G J Biomater Sci Polym Ed; 2020 Mar; 31(4):439-455. PubMed ID: 31760873 [TBL] [Abstract][Full Text] [Related]
13. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
14. Electrospun vascular scaffold for cellularized small diameter blood vessels: A preclinical large animal study. Ju YM; Ahn H; Arenas-Herrera J; Kim C; Abolbashari M; Atala A; Yoo JJ; Lee SJ Acta Biomater; 2017 Sep; 59():58-67. PubMed ID: 28642016 [TBL] [Abstract][Full Text] [Related]
15. Design and comprehensive assessment of a biomimetic tri-layer tubular scaffold via biodegradable polymers for vascular tissue engineering applications. Jia W; Li M; Weng H; Gu G; Chen Z Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110717. PubMed ID: 32204029 [TBL] [Abstract][Full Text] [Related]
16. Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF. Han F; Jia X; Dai D; Yang X; Zhao J; Zhao Y; Fan Y; Yuan X Biomaterials; 2013 Oct; 34(30):7302-13. PubMed ID: 23830580 [TBL] [Abstract][Full Text] [Related]
17. Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: A potential scaffold for soft tissue engineering. Shamirzaei Jeshvaghani E; Ghasemi-Mobarakeh L; Mansurnezhad R; Ajalloueian F; Kharaziha M; Dinari M; Sami Jokandan M; Chronakis IS J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2371-2383. PubMed ID: 29168916 [TBL] [Abstract][Full Text] [Related]
18. A multilayer scaffold design with spatial arrangement of cells to modulate esophageal tissue growth. Soliman S; Laurent J; Kalenjian L; Burnette K; Hedberg B; La Francesca S J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):324-331. PubMed ID: 29717817 [TBL] [Abstract][Full Text] [Related]
19. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering. Horst M; Milleret V; Noetzli S; Gobet R; Sulser T; Eberli D J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):658-667. PubMed ID: 26669507 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical fabrication of a biomimetic elastin-containing bi-layered scaffold for vascular tissue engineering. Nguyen TU; Shojaee M; Bashur CA; Kishore V Biofabrication; 2018 Nov; 11(1):015007. PubMed ID: 30411718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]