These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 28130914)
1. Enhancement of dielectrophoresis using fractal gold nanostructured electrodes. Koklu A; Sabuncu AC; Beskok A Electrophoresis; 2017 Jun; 38(11):1458-1465. PubMed ID: 28130914 [TBL] [Abstract][Full Text] [Related]
2. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. Chu H; Doh I; Cho YH Lab Chip; 2009 Mar; 9(5):686-91. PubMed ID: 19224018 [TBL] [Abstract][Full Text] [Related]
3. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device. Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494 [TBL] [Abstract][Full Text] [Related]
4. One-, two-, and three-dimensional organization of colloidal particles using nonuniform alternating current electric fields. Docoslis A; Alexandridis P Electrophoresis; 2002 Jul; 23(14):2174-83. PubMed ID: 12210221 [TBL] [Abstract][Full Text] [Related]
5. Two-dimensional computational method for generating planar electrode patterns with enhanced volumetric electric fields and its application to continuous dielectrophoretic bacterial capture. Han CH; Ha HW; Jang J Lab Chip; 2019 May; 19(10):1772-1782. PubMed ID: 30973569 [TBL] [Abstract][Full Text] [Related]
6. Using dielectrophoretic spectra to identify and separate viable yeast cells. Bunthawin S; Srichan P; Jaruwongrungsee K; Ritchie RJ Appl Microbiol Biotechnol; 2023 Dec; 107(24):7647-7655. PubMed ID: 37815615 [TBL] [Abstract][Full Text] [Related]
7. Dielectrophoretic concentration of low-abundance nanoparticles using a nanostructured tip. Yeo WH; Kopacz AM; Kim JH; Chen X; Wu J; Gao D; Lee KH; Liu WK; Chung JH Nanotechnology; 2012 Dec; 23(48):485707. PubMed ID: 23137928 [TBL] [Abstract][Full Text] [Related]
13. Separation of submicron bioparticles by dielectrophoresis. Morgan H; Hughes MP; Green NG Biophys J; 1999 Jul; 77(1):516-25. PubMed ID: 10388776 [TBL] [Abstract][Full Text] [Related]
14. Analysis and measurement of dielectrophoretic manipulation of particles and lymphocytes using rail-type electrodes. Tatsumi K; Kawano K; Okui H; Shintani H; Nakabe K Med Eng Phys; 2016 Jan; 38(1):24-32. PubMed ID: 26054808 [TBL] [Abstract][Full Text] [Related]
15. Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes. Bakewell DJ; Morgan H IEEE Trans Nanobioscience; 2006 Jun; 5(2):139-46. PubMed ID: 16805110 [TBL] [Abstract][Full Text] [Related]
16. Effects of Fractal Electrode Geometry in Charge Injection Capacity of TiN Microelectrodes. Park H; Maple AR; Lee H Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3371-3374. PubMed ID: 33018727 [TBL] [Abstract][Full Text] [Related]
17. Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. Gierhart BC; Howitt DG; Chen SJ; Smith RL; Collins SD Langmuir; 2007 Nov; 23(24):12450-6. PubMed ID: 17963407 [TBL] [Abstract][Full Text] [Related]
18. Assembly of metal nanoparticles into nanogaps. Barsotti RJ; Vahey MD; Wartena R; Chiang YM; Voldman J; Stellacci F Small; 2007 Mar; 3(3):488-99. PubMed ID: 17290481 [TBL] [Abstract][Full Text] [Related]