These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28131009)

  • 41. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detection of cAMP and of PKA activity in Saccharomyces cerevisiae single cells using Fluorescence Resonance Energy Transfer (FRET) probes.
    Colombo S; Broggi S; Collini M; D'Alfonso L; Chirico G; Martegani E
    Biochem Biophys Res Commun; 2017 Jun; 487(3):594-599. PubMed ID: 28433631
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-Molecule Narrow-Field Microscopy of Protein-DNA Binding Dynamics in Glucose Signal Transduction of Live Yeast Cells.
    Wollman AJM; Leake MC
    Methods Mol Biol; 2022; 2476():5-16. PubMed ID: 35635693
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorescent proteins and fluorescence resonance energy transfer (FRET) as tools in signaling research.
    Schmid JA; Birbach A
    Thromb Haemost; 2007 Mar; 97(3):378-84. PubMed ID: 17334504
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Luminescent biosensors for real-time monitoring of intracellular cAMP.
    Binkowski BF; Fan F; Wood KV
    Methods Mol Biol; 2011; 756():263-71. PubMed ID: 21870231
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chapter 2: Molecular sensors based on fluorescence resonance energy transfer to visualize cellular dynamics.
    Ananthanarayanan B; Ni Q; Zhang J
    Methods Cell Biol; 2008; 89():37-57. PubMed ID: 19118671
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Measurement of GPCR-G protein activity in living cells.
    Ratnayake K; Kankanamge D; Senarath K; Siripurapu P; Weis N; Tennakoon M; Payton JL; Karunarathne A
    Methods Cell Biol; 2017; 142():1-25. PubMed ID: 28964328
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Visualizing cellular heterogeneity by quantifying the dynamics of MAPK activity in live mammalian cells with synthetic fluorescent biosensors.
    Ma M; Bordignon P; Dotto GP; Pelet S
    Heliyon; 2020 Dec; 6(12):e05574. PubMed ID: 33319088
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Live cell visualization of Golgi membrane dynamics by super-resolution confocal live imaging microscopy.
    Kurokawa K; Ishii M; Suda Y; Ichihara A; Nakano A
    Methods Cell Biol; 2013; 118():235-42. PubMed ID: 24295310
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Real-time and high throughput monitoring of cAMP in live cells using a fluorescent membrane potential-sensitive dye.
    Tang Y; Li X; He J; Lu J; Diwu Z
    Assay Drug Dev Technol; 2006 Aug; 4(4):461-71. PubMed ID: 16945018
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of phosphoinositide dynamics during phagocytosis using genetically encoded fluorescent biosensors.
    Cosío G; Grinstein S
    Methods Mol Biol; 2008; 445():287-300. PubMed ID: 18425457
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Generating kinetic environments to study dynamic cellular processes in single cells.
    Thiemicke A; Jashnsaz H; Li G; Neuert G
    Sci Rep; 2019 Jul; 9(1):10129. PubMed ID: 31300695
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temporally multiplexed imaging of dynamic signaling networks in living cells.
    Qian Y; Celiker OT; Wang Z; Guner-Ataman B; Boyden ES
    Cell; 2023 Dec; 186(25):5656-5672.e21. PubMed ID: 38029746
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A FRET-based biosensor for measuring Gα13 activation in single cells.
    Mastop M; Reinhard NR; Zuconelli CR; Terwey F; Gadella TWJ; van Unen J; Adjobo-Hermans MJW; Goedhart J
    PLoS One; 2018; 13(3):e0193705. PubMed ID: 29505611
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Real-Time Visualization and Quantification of Contractile Ring Proteins in Single Living Cells.
    Davidson R; Liu Y; Gerien KS; Wu JQ
    Methods Mol Biol; 2016; 1369():9-23. PubMed ID: 26519302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-cell dynamics and variability of MAPK activity in a yeast differentiation pathway.
    Conlon P; Gelin-Licht R; Ganesan A; Zhang J; Levchenko A
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):E5896-E5905. PubMed ID: 27651485
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic visualization of cellular signaling.
    Ni Q; Zhang J
    Adv Biochem Eng Biotechnol; 2010; 119():79-97. PubMed ID: 19499207
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A method of correlative light and electron microscopy for yeast cells.
    Asakawa H; Hiraoka Y; Haraguchi T
    Micron; 2014 Jun; 61():53-61. PubMed ID: 24792447
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluorescent biosensors - probing protein kinase function in cancer and drug discovery.
    Morris MC
    Biochim Biophys Acta; 2013 Jul; 1834(7):1387-95. PubMed ID: 23376184
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Visualization of cGMP with cGi biosensors.
    Thunemann M; Fomin N; Krawutschke C; Russwurm M; Feil R
    Methods Mol Biol; 2013; 1020():89-120. PubMed ID: 23709028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.