BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 28131089)

  • 1. Increased iron availability resulting from increased CO
    Chen B; Zou D; Yang Y
    Chemosphere; 2017 Apr; 173():444-451. PubMed ID: 28131089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of elevated atmospheric CO
    Ma H; Zou D; Wen J; Ji Z; Gong J; Liu C
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33361-33369. PubMed ID: 30259325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthetic Performance of the Red Alga Pyropia haitanensis During Emersion, With Special Reference to Effects of Solar UV Radiation, Dehydration and Elevated CO2 Concentration.
    Xu J; Gao K
    Photochem Photobiol; 2015 Nov; 91(6):1376-81. PubMed ID: 26384590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High nutrient availability modulates photosynthetic performance and biochemical components of the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in response to ocean acidification.
    Long C; Zhang Y; Wei Z; Long L
    Mar Environ Res; 2024 Feb; 194():106339. PubMed ID: 38182500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of inorganic carbon supplies and light on photosynthetic functions of Pyropia haitanensis.].
    Jiang H; Zou DH; Lou WY
    Ying Yong Sheng Tai Xue Bao; 2018 Feb; 29(2):515-521. PubMed ID: 29692066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased light intensity enhances photosynthesis and biochemical components of red macroalga of commercial importance, Kappaphycus alvarezii, in response to ocean acidification.
    Zhang Y; Xiao Z; Wei Z; Long L
    Plant Physiol Biochem; 2024 Mar; 208():108465. PubMed ID: 38422577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Traits for Carbon Access in Macrophytes.
    Stepien CC; Pfister CA; Wootton JT
    PLoS One; 2016; 11(7):e0159062. PubMed ID: 27415005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental assessment of algal calcification as a potential source of atmospheric CO2.
    Kalokora OJ; Buriyo AS; Asplund ME; Gullström M; Mtolera MSP; Björk M
    PLoS One; 2020; 15(4):e0231971. PubMed ID: 32348324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification.
    Ma J; Wang W; Liu X; Wang Z; Gao G; Wu H; Li X; Xu J
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):3202-3212. PubMed ID: 31838674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).
    Olischläger M; Wiencke C
    J Exp Bot; 2013 Dec; 64(18):5587-97. PubMed ID: 24127518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated CO
    Zhang D; Xu J; Bao M; Yan D; Beer S; Beardall J; Gao K
    J Photochem Photobiol B; 2020 Dec; 213():112074. PubMed ID: 33152637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of benthic and planktonic diatoms on the growth and biochemical composition of the commercial macroalga Pyropia haitanensis.
    Patil V; Sun L; Mohite V; Liang J; Wang D; Gao Y; Chen C
    Mar Pollut Bull; 2024 Jun; 203():116411. PubMed ID: 38733890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta).
    Gordillo FJ; Niell FX; Figueroa FL
    Planta; 2001 May; 213(1):64-70. PubMed ID: 11523657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allelopathic inhibitory effect of the macroalga Pyropia haitanensis (Rhodophyta) on harmful bloom-forming Pseudo-nitzschia species.
    Patil V; Abate R; Wu W; Zhang J; Lin H; Chen C; Liang J; Sun L; Li X; Li Y; Gao Y
    Mar Pollut Bull; 2020 Dec; 161(Pt A):111752. PubMed ID: 33091839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta).
    Wu H
    Biomed Res Int; 2016; 2016():7383918. PubMed ID: 27642603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Effects of Ocean Acidification and Warming on Algae Lacking Carbon Concentrating Mechanisms.
    Kübler JE; Dudgeon SR
    PLoS One; 2015; 10(7):e0132806. PubMed ID: 26172263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative physiological behaviors of Ulva lactuca and Gracilariopsis lemaneiformis in responses to elevated atmospheric CO
    Liu C; Zou D; Yang Y
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27493-27502. PubMed ID: 30047019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of CO2-induced seawater acidification on growth, photosynthesis and inorganic carbon acquisition of the harmful bloom-forming marine microalga, Karenia mikimotoi.
    Hu S; Zhou B; Wang Y; Wang Y; Zhang X; Zhao Y; Zhao X; Tang X
    PLoS One; 2017; 12(8):e0183289. PubMed ID: 28813504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?
    Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G
    Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory.
    Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA
    Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.