BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 28131089)

  • 21. The response of Pyropia haitanensis to inorganic arsenic under laboratory culture.
    Zhao R; Xie CT; Xu Y; Ji DH; Chen CS; Ye J; Xue XM; Wang WL
    Chemosphere; 2020 Dec; 261():128160. PubMed ID: 33113648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Climate change and ocean acidification effects on seagrasses and marine macroalgae.
    Koch M; Bowes G; Ross C; Zhang XH
    Glob Chang Biol; 2013 Jan; 19(1):103-32. PubMed ID: 23504724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulatory mechanisms underlying the maintenance of homeostasis in Pyropia haitanensis under hypersaline stress conditions.
    Wang W; Xu Y; Chen T; Xing L; Xu K; Xu Y; Ji D; Chen C; Xie C
    Sci Total Environ; 2019 Apr; 662():168-179. PubMed ID: 30690352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study.
    Drake BG
    Glob Chang Biol; 2014 Nov; 20(11):3329-43. PubMed ID: 24820033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced biological carbon consumption in a high CO2 ocean.
    Riebesell U; Schulz KG; Bellerby RG; Botros M; Fritsche P; Meyerhöfer M; Neill C; Nondal G; Oschlies A; Wohlers J; Zöllner E
    Nature; 2007 Nov; 450(7169):545-8. PubMed ID: 17994008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of ocean acidification on iron availability to marine phytoplankton.
    Shi D; Xu Y; Hopkinson BM; Morel FM
    Science; 2010 Feb; 327(5966):676-9. PubMed ID: 20075213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrogen enrichment offsets direct negative effects of ocean acidification on a reef-building crustose coralline alga.
    Johnson MD; Carpenter RC
    Biol Lett; 2018 Jul; 14(7):. PubMed ID: 29997188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effects of nitrogen application and elevated atmospheric CO2 on electron transport and energy partitioning in flag leaf photosynthesis of wheat].
    Zhang XC; Yu XF; Ma YF
    Ying Yong Sheng Tai Xue Bao; 2011 Mar; 22(3):673-80. PubMed ID: 21657023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2.
    Watson AJ; Bakker DC; Ridgwell AJ; Boyd PW; Law CS
    Nature; 2000 Oct; 407(6805):730-3. PubMed ID: 11048716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and functional characterization of an ammonium transporter gene, PyAMT1, related to nitrogen assimilation in the marine macroalga Pyropia yezoensis (Rhodophyta).
    Kakinuma M; Nakamoto C; Kishi K; Coury DA; Amano H
    Mar Environ Res; 2017 Jul; 128():76-87. PubMed ID: 27581686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative RT-PCR Platform to Measure Transcript Levels of C and N Metabolism-Related Genes in Durum Wheat: Transcript Profiles in Elevated [CO2] and High Temperature at Different Levels of N Supply.
    Vicente R; Pérez P; Martínez-Carrasco R; Usadel B; Kostadinova S; Morcuende R
    Plant Cell Physiol; 2015 Aug; 56(8):1556-73. PubMed ID: 26063390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae.
    James RK; Hepburn CD; Pritchard D; Richards DK; Hurd CL
    Sci Rep; 2022 Dec; 12(1):21947. PubMed ID: 36536020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Does elevated atmospheric [CO2] alter diurnal C uptake and the balance of C and N metabolites in growing and fully expanded soybean leaves?
    Ainsworth EA; Rogers A; Leakey AD; Heady LE; Gibon Y; Stitt M; Schurr U
    J Exp Bot; 2007; 58(3):579-91. PubMed ID: 17158509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change.
    Raven JA; Giordano M; Beardall J; Maberly SC
    Photosynth Res; 2011 Sep; 109(1-3):281-96. PubMed ID: 21327536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interactive effects of ocean acidification and nitrogen-limitation on the diatom Phaeodactylum tricornutum.
    Li W; Gao K; Beardall J
    PLoS One; 2012; 7(12):e51590. PubMed ID: 23236517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photophysiological responses of the marine macroalga Gracilariopsis lemaneiformis to ocean acidification and warming.
    Yang Y; Li W; Li Y; Xu N
    Mar Environ Res; 2021 Jan; 163():105204. PubMed ID: 33213860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal Acclimation of Respiration and Photosynthesis in the Marine Macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta).
    Zou D; Gao K
    J Phycol; 2013 Feb; 49(1):61-8. PubMed ID: 27008389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming.
    Kang EJ; Han AR; Kim JH; Kim IN; Lee S; Min JO; Nam BR; Choi YJ; Edwards MS; Diaz-Pulido G; Kim C
    Sci Total Environ; 2021 May; 769():144443. PubMed ID: 33493906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photosynthesis and mineralogy of Jania rubens at low pH/high pCO
    Porzio L; Buia MC; Ferretti V; Lorenti M; Rossi M; Trifuoggi M; Vergara A; Arena C
    Sci Total Environ; 2018 Jul; 628-629():375-383. PubMed ID: 29448022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO
    Tong S; Gao K; Hutchins DA
    Glob Chang Biol; 2018 Jul; 24(7):3055-3064. PubMed ID: 29356310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.