BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 28131101)

  • 21. Biosynthesis and cell-wall deposition of a pectin-xyloglucan complex in pea.
    Cumming CM; Rizkallah HD; McKendrick KA; Abdel-Massih RM; Baydoun EA; Brett CT
    Planta; 2005 Oct; 222(3):546-55. PubMed ID: 15912355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and growth of plant cell walls.
    Cosgrove DJ
    Nat Rev Mol Cell Biol; 2024 May; 25(5):340-358. PubMed ID: 38102449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of pectin in plant morphogenesis.
    Palin R; Geitmann A
    Biosystems; 2012 Sep; 109(3):397-402. PubMed ID: 22554809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Getting into shape: the mechanics behind plant morphogenesis.
    Eng RC; Sampathkumar A
    Curr Opin Plant Biol; 2018 Dec; 46():25-31. PubMed ID: 30036706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The intercellular biotrophic leaf pathogen Cymadothea trifolii locally degrades pectins, but not cellulose or xyloglucan in cell walls of Trifolium repens.
    Simon UK; Bauer R; Rioux D; Simard M; Oberwinkler F
    New Phytol; 2005 Jan; 165(1):243-60. PubMed ID: 15720637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent structural insights into the enzymology of the ubiquitous plant cell wall glycan xyloglucan.
    Attia MA; Brumer H
    Curr Opin Struct Biol; 2016 Oct; 40():43-53. PubMed ID: 27475238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Fimbriae, Flagella and Cellulose on the Attachment of Salmonella Typhimurium ATCC 14028 to Plant Cell Wall Models.
    Tan MS; White AP; Rahman S; Dykes GA
    PLoS One; 2016; 11(6):e0158311. PubMed ID: 27355584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls.
    Wang T; Park YB; Caporini MA; Rosay M; Zhong L; Cosgrove DJ; Hong M
    Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16444-9. PubMed ID: 24065828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xyloglucan Remodeling Defines Auxin-Dependent Differential Tissue Expansion in Plants.
    Velasquez SM; Guo X; Gallemi M; Aryal B; Venhuizen P; Barbez E; Dünser KA; Darino M; Pĕnčík A; Novák O; Kalyna M; Mouille G; Benková E; P Bhalerao R; Mravec J; Kleine-Vehn J
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methods for structural characterization of the products of cellulose- and xyloglucan-hydrolyzing enzymes.
    Peña MJ; Tuomivaara ST; Urbanowicz BR; O'Neill MA; York WS
    Methods Enzymol; 2012; 510():121-39. PubMed ID: 22608724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xyloglucan deficiency leads to a reduction in turgor pressure and changes in cell wall properties, affecting early seedling establishment.
    Bou Daher F; Serra L; Carter R; Jönsson H; Robinson S; Meyerowitz EM; Gray WM
    Curr Biol; 2024 May; 34(10):2094-2106.e6. PubMed ID: 38677280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. UDP-galactose transporter gene hUGT1 expression in tobacco plants leads to hyper-galactosylated cell wall components.
    Abedi T; Khalil MF; Asai T; Ishihara N; Kitamura K; Ishida N; Tanaka N
    J Biosci Bioeng; 2016 May; 121(5):573-83. PubMed ID: 26507776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural properties and foaming of plant cell wall polysaccharide dispersions.
    Beatrice CAG; Rosa-Sibakov N; Lille M; Sözer N; Poutanen K; Ketoja JA
    Carbohydr Polym; 2017 Oct; 173():508-518. PubMed ID: 28732894
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis.
    Kong Y; Peña MJ; Renna L; Avci U; Pattathil S; Tuomivaara ST; Li X; Reiter WD; Brandizzi F; Hahn MG; Darvill AG; York WS; O'Neill MA
    Plant Physiol; 2015 Apr; 167(4):1296-306. PubMed ID: 25673778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The cell wall of the Arabidopsis pollen tube--spatial distribution, recycling, and network formation of polysaccharides.
    Chebli Y; Kaneda M; Zerzour R; Geitmann A
    Plant Physiol; 2012 Dec; 160(4):1940-55. PubMed ID: 23037507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells.
    Haas KT; Wightman R; Meyerowitz EM; Peaucelle A
    Science; 2020 Feb; 367(6481):1003-1007. PubMed ID: 32108107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. If walls could talk.
    Braam J
    Curr Opin Plant Biol; 1999 Dec; 2(6):521-4. PubMed ID: 10607663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Xyloglucan in the primary cell wall: assessment by FESEM, selective enzyme digestions and nanogold affinity tags.
    Zheng Y; Wang X; Chen Y; Wagner E; Cosgrove DJ
    Plant J; 2018 Jan; 93(2):211-226. PubMed ID: 29160933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pectin and Xyloglucan Influence the Attachment of Salmonella enterica and Listeria monocytogenes to Bacterial Cellulose-Derived Plant Cell Wall Models.
    Tan MS; Rahman S; Dykes GA
    Appl Environ Microbiol; 2016 Jan; 82(2):680-8. PubMed ID: 26567310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatiotemporal Changes in Xylan-1/Xyloglucan and Xyloglucan Xyloglucosyl Transferase (XTH-Xet5) as a Step-In of Ultrastructural Cell Wall Remodelling in Potato⁻Potato Virus Y (PVY
    Otulak-Kozieł K; Kozieł E; Bujarski JJ
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30081556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.