BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28131854)

  • 1. A structural view of the RNA-dependent RNA polymerases from the Flavivirus genus.
    Lu G; Gong P
    Virus Res; 2017 Apr; 234():34-43. PubMed ID: 28131854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perturbation in the conserved methyltransferase-polymerase interface of flavivirus NS5 differentially affects polymerase initiation and elongation.
    Wu J; Lu G; Zhang B; Gong P
    J Virol; 2015 Jan; 89(1):249-61. PubMed ID: 25320292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases.
    Selisko B; Dutartre H; Guillemot JC; Debarnot C; Benarroch D; Khromykh A; Desprès P; Egloff MP; Canard B
    Virology; 2006 Jul; 351(1):145-58. PubMed ID: 16631221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Structural Overview of RNA-Dependent RNA Polymerases from the Flaviviridae Family.
    Wu J; Liu W; Gong P
    Int J Mol Sci; 2015 Jun; 16(6):12943-57. PubMed ID: 26062131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NS5 from Dengue Virus Serotype 2 Can Adopt a Conformation Analogous to That of Its Zika Virus and Japanese Encephalitis Virus Homologues.
    El Sahili A; Soh TS; Schiltz J; Gharbi-Ayachi A; Seh CC; Shi PY; Lim SP; Lescar J
    J Virol; 2019 Dec; 94(1):. PubMed ID: 31597763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoclonal antibodies to the West Nile virus NS5 protein map to linear and conformational epitopes in the methyltransferase and polymerase domains.
    Hall RA; Tan SE; Selisko B; Slade R; Hobson-Peters J; Canard B; Hughes M; Leung JY; Balmori-Melian E; Hall-Mendelin S; Pham KB; Clark DC; Prow NA; Khromykh AA
    J Gen Virol; 2009 Dec; 90(Pt 12):2912-2922. PubMed ID: 19710254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling.
    Lim SP; Noble CG; Seh CC; Soh TS; El Sahili A; Chan GK; Lescar J; Arora R; Benson T; Nilar S; Manjunatha U; Wan KF; Dong H; Xie X; Shi PY; Yokokawa F
    PLoS Pathog; 2016 Aug; 12(8):e1005737. PubMed ID: 27500641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase.
    Kim YG; Yoo JS; Kim JH; Kim CM; Oh JW
    BMC Mol Biol; 2007 Jul; 8():59. PubMed ID: 17623110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rearrangement of motif F in the flavivirus RNA-directed RNA polymerase.
    Potapova U; Feranchuk S; Leonova G; Belikov S
    Int J Biol Macromol; 2018 Mar; 108():990-998. PubMed ID: 29113891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conformation-based intra-molecular initiation factor identified in the flavivirus RNA-dependent RNA polymerase.
    Wu J; Ye HQ; Zhang QY; Lu G; Zhang B; Gong P
    PLoS Pathog; 2020 May; 16(5):e1008484. PubMed ID: 32357182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the methyltransferase domain of Japanese encephalitis virus NS5 on the polymerase activity.
    Wang Q; Weng L; Tian X; Counor D; Sun J; Mao Y; Deubel V; Okada H; Toyoda T
    Biochim Biophys Acta; 2012 May; 1819(5):411-8. PubMed ID: 22285573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and molecular characterization of human antibody fragments specific for dengue NS5 protein.
    Zhao Y; Moreland NJ; Tay MY; Lee CC; Swaminathan K; Vasudevan SG
    Virus Res; 2014 Jan; 179():225-30. PubMed ID: 24262074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-dependent RNA polymerases from Flaviviridae.
    Choi KH; Rossmann MG
    Curr Opin Struct Biol; 2009 Dec; 19(6):746-51. PubMed ID: 19914821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage.
    Gorbalenya AE; Pringle FM; Zeddam JL; Luke BT; Cameron CE; Kalmakoff J; Hanzlik TN; Gordon KH; Ward VK
    J Mol Biol; 2002 Nov; 324(1):47-62. PubMed ID: 12421558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The dengue virus NS5 protein as a target for drug discovery.
    Lim SP; Noble CG; Shi PY
    Antiviral Res; 2015 Jul; 119():57-67. PubMed ID: 25912817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A crystal structure of the dengue virus non-structural protein 5 (NS5) polymerase delineates interdomain amino acid residues that enhance its thermostability and de novo initiation activities.
    Lim SP; Koh JH; Seh CC; Liew CW; Davidson AD; Chua LS; Chandrasekaran R; Cornvik TC; Shi PY; Lescar J
    J Biol Chem; 2013 Oct; 288(43):31105-14. PubMed ID: 24025331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal Structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface.
    Lu G; Gong P
    PLoS Pathog; 2013; 9(8):e1003549. PubMed ID: 23950717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The flavivirus polymerase as a target for drug discovery.
    Malet H; Massé N; Selisko B; Romette JL; Alvarez K; Guillemot JC; Tolou H; Yap TL; Vasudevan S; Lescar J; Canard B
    Antiviral Res; 2008 Oct; 80(1):23-35. PubMed ID: 18611413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Structure of the RNA-Dependent RNA Polymerase of a Permutotetravirus Suggests a Link between Primer-Dependent and Primer-Independent Polymerases.
    Ferrero DS; Buxaderas M; Rodríguez JF; Verdaguer N
    PLoS Pathog; 2015 Dec; 11(12):e1005265. PubMed ID: 26625123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.