These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 28131888)

  • 1. EEG neural correlates of goal-directed movement intention.
    Pereira J; Ofner P; Schwarz A; Sburlea AI; Müller-Putz GR
    Neuroimage; 2017 Apr; 149():129-140. PubMed ID: 28131888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates.
    López-Larraz E; Montesano L; Gil-Agudo Á; Minguez J
    J Neuroeng Rehabil; 2014 Nov; 11():153. PubMed ID: 25398273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting intention to execute the next movement while performing current movement from EEG using global optimal constrained ICA.
    Eilbeigi E; Setarehdan SK
    Comput Biol Med; 2018 Aug; 99():63-75. PubMed ID: 29890509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online detection of movement during natural and self-initiated reach-and-grasp actions from EEG signals.
    Pereira J; Kobler R; Ofner P; Schwarz A; Müller-Putz GR
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34130267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discriminative Manifold Learning Based Detection of Movement-Related Cortical Potentials.
    Lin C; Wang BH; Jiang N; Xu R; Mrachacz-Kersting N; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):921-927. PubMed ID: 26955040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG Headset Evaluation for Detection of Single-Trial Movement Intention for Brain-Computer Interfaces.
    Jochumsen M; Knoche H; Kjaer TW; Dinesen B; Kidmose P
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32423133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials.
    Jiang N; Gizzi L; Mrachacz-Kersting N; Dremstrup K; Farina D
    Clin Neurophysiol; 2015 Jan; 126(1):154-9. PubMed ID: 24910150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of movement intention from single-trial movement-related cortical potentials.
    Niazi IK; Jiang N; Tiberghien O; Nielsen JF; Dremstrup K; Farina D
    J Neural Eng; 2011 Dec; 8(6):066009. PubMed ID: 22027549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity.
    Mrachacz-Kersting N; Voigt M; Stevenson AJT; Aliakbaryhosseinabadi S; Jiang N; Dremstrup K; Farina D
    Brain Res; 2017 Nov; 1674():91-100. PubMed ID: 28859916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review of Techniques for Detection of Movement Intention Using Movement-Related Cortical Potentials.
    Shakeel A; Navid MS; Anwar MN; Mazhar S; Jochumsen M; Niazi IK
    Comput Math Methods Med; 2015; 2015():346217. PubMed ID: 26881008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upper limb movements can be decoded from the time-domain of low-frequency EEG.
    Ofner P; Schwarz A; Pereira J; Müller-Putz GR
    PLoS One; 2017; 12(8):e0182578. PubMed ID: 28797109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting and classifying three different hand movement types through electroencephalography recordings for neurorehabilitation.
    Jochumsen M; Niazi IK; Dremstrup K; Kamavuako EN
    Med Biol Eng Comput; 2016 Oct; 54(10):1491-501. PubMed ID: 26639017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrode fusion for the prediction of self-initiated fine movements from single-trial readiness potentials.
    Abou Zeid E; Chau T
    Int J Neural Syst; 2015 Jun; 25(4):1550014. PubMed ID: 25903225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparatory movement state enhances premovement EEG representations for brain-computer interfaces.
    Zhang Y; Li M; Wang H; Zhang M; Xu G
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38806037
    [No Abstract]   [Full Text] [Related]  

  • 17. Responses in posterior parietal cortex to movement intention task with visual and tactile cues.
    Kamikawa Y; Tanaka T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6654-7. PubMed ID: 26737819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of spatial filters and features for the detection and classification of movement-related cortical potentials in healthy individuals and stroke patients.
    Jochumsen M; Niazi IK; Mrachacz-Kersting N; Jiang N; Farina D; Dremstrup K
    J Neural Eng; 2015 Oct; 12(5):056003. PubMed ID: 26214339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influential Factors of an Asynchronous BCI for Movement Intention Detection.
    Rodpongpun S; Janyalikit T; Ratanamahatana CA
    Comput Math Methods Med; 2020; 2020():8573754. PubMed ID: 32273902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing Recalibration Strategies for Electroencephalography-Based Decoders of Movement Intention in Neurological Patients with Motor Disability.
    López-Larraz E; Ibáñez J; Trincado-Alonso F; Monge-Pereira E; Pons JL; Montesano L
    Int J Neural Syst; 2018 Sep; 28(7):1750060. PubMed ID: 29463157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.