These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28131922)

  • 1. Degradation of polystyrene and selected analogues by biological Fenton chemistry approaches: Opportunities and limitations.
    Krueger MC; Seiwert B; Prager A; Zhang S; Abel B; Harms H; Schlosser D
    Chemosphere; 2017 Apr; 173():520-528. PubMed ID: 28131922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry.
    Krueger MC; Hofmann U; Moeder M; Schlosser D
    PLoS One; 2015; 10(7):e0131773. PubMed ID: 26147966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Widespread ability of fungi to drive quinone redox cycling for biodegradation.
    Krueger MC; Bergmann M; Schlosser D
    FEMS Microbiol Lett; 2016 Jun; 363(11):. PubMed ID: 27190290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A potential mechanism for degradation of 4,5-dichloro-2-(n-octyl)-3[2H]-isothiazolone (DCOIT) by brown-rot fungus Gloeophyllum trabeum.
    Zhu Y; Xue J; Cao J; Xiao H
    J Hazard Mater; 2017 Sep; 337():72-79. PubMed ID: 28505510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven fenton reaction.
    Kerem Z; hammel ; Hammel KE
    FEBS Lett; 1999 Mar; 446(1):49-54. PubMed ID: 10100613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cultivation of filamentous fungi for attack on synthetic polymers via biological Fenton chemistry.
    Schlosser D
    Methods Enzymol; 2021; 648():71-94. PubMed ID: 33579418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal biodegradation of lignopolystyrene graft copolymers.
    Milstein O; Gersonde R; Huttermann A; Chen MJ; Meister JJ
    Appl Environ Microbiol; 1992 Oct; 58(10):3225-32. PubMed ID: 1444360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions.
    Arantes V; Milagres AM; Filley TR; Goodell B
    J Ind Microbiol Biotechnol; 2011 Apr; 38(4):541-55. PubMed ID: 20711629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum.
    Jensen KA; Houtman CJ; Ryan ZC; Hammel KE
    Appl Environ Microbiol; 2001 Jun; 67(6):2705-11. PubMed ID: 11375184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal hydroquinones contribute to brown rot of wood.
    Suzuki MR; Hunt CG; Houtman CJ; Dalebroux ZD; Hammel KE
    Environ Microbiol; 2006 Dec; 8(12):2214-23. PubMed ID: 17107562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi.
    Purnomo AS; Kamei I; Kondo R
    J Biosci Bioeng; 2008 Jun; 105(6):614-21. PubMed ID: 18640600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin degradation by a novel peptide, Gt factor, from brown rot fungus Gloeophyllum trabeum.
    Wang W; Huang F; Mei Lu X; Ji Gao P
    Biotechnol J; 2006 Apr; 1(4):447-53. PubMed ID: 16892272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genomics-informed study of oxalate and cellulase regulation by brown rot wood-degrading fungi.
    Presley GN; Zhang J; Schilling JS
    Fungal Genet Biol; 2018 Mar; 112():64-70. PubMed ID: 27543342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoassisted Fenton degradation of polystyrene.
    Feng HM; Zheng JC; Lei NY; Yu L; Kong KH; Yu HQ; Lau TC; Lam MH
    Environ Sci Technol; 2011 Jan; 45(2):744-50. PubMed ID: 21158391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial degradation of [C14C]polystyrene and 1,3-diphenylbutane.
    Sielicki M; Focht DD; Martin JP
    Can J Microbiol; 1978 Jul; 24(7):798-803. PubMed ID: 98222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis.
    Monrroy M; Ortega I; Ramírez M; Baeza J; Freer J
    Enzyme Microb Technol; 2011 Oct; 49(5):472-7. PubMed ID: 22112620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New polymeric model substrates for the study of microbial ligninolysis.
    Kawai S; Jensen KA; Bao W; Hammel KE
    Appl Environ Microbiol; 1995 Sep; 61(9):3407-14. PubMed ID: 7574649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose.
    Xu G; Goodell B
    J Biotechnol; 2001 Apr; 87(1):43-57. PubMed ID: 11267698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function and mechanism of a low-molecular-weight peptide produced by Gloeophyllum trabeum in biodegradation of cellulose.
    Wang W; Gao PJ
    J Biotechnol; 2003 Mar; 101(2):119-30. PubMed ID: 12568741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid polyether cleavage via extracellular one-electron oxidation by a brown-rot basidiomycete.
    Kerem Z; Bao W; Hammel KE
    Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10373-7. PubMed ID: 9724710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.