These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 28131972)

  • 1. Degradation pathway and mechanism of Reactive Brilliant Red X-3B in electro-assisted microbial system under anaerobic condition.
    Cao Z; Zhang J; Zhang J; Zhang H
    J Hazard Mater; 2017 May; 329():159-165. PubMed ID: 28131972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced degradation of azo dye by a stacked microbial fuel cell-biofilm electrode reactor coupled system.
    Cao X; Wang H; Li XQ; Fang Z; Li XN
    Bioresour Technol; 2017 Mar; 227():273-278. PubMed ID: 28040648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential reduction/oxidation of azo dyes in a three-dimensional biofilm electrode reactor.
    Liu S; Feng X; Gu F; Li X; Wang Y
    Chemosphere; 2017 Nov; 186():287-294. PubMed ID: 28787684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergic degradation of reactive brilliant red X-3B using three dimension electrode-photocatalytic reactor.
    An T; Zhu X; Xiong Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(10):2069-82. PubMed ID: 11759916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of azo dye active brilliant red X-3B by composite ferrate solution.
    Xu GR; Zhang YP; Li GB
    J Hazard Mater; 2009 Jan; 161(2-3):1299-305. PubMed ID: 18555598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the adsorption of reactive brilliant red X-3B dye on organic and carbon aerogels.
    Wu X; Wu D; Fu R
    J Hazard Mater; 2007 Aug; 147(3):1028-36. PubMed ID: 17363146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of Reactive Brilliant Red X-3B by zero-valent iron/activated carbon system in the presence of microwave irradiation.
    Pan F; Luo Y; Zhang LR; Fu J
    Water Sci Technol; 2011; 64(12):2345-51. PubMed ID: 22170826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineralization and kinetics of Reactive Brilliant Red X-3B by a combined anaerobic-aerobic bioprocess inoculated with the coculture of fungus and bacterium.
    Shi S; Ma F; Sun T; Li A; Zhou J; Qu Y
    Appl Biochem Biotechnol; 2014 Jan; 172(2):1106-20. PubMed ID: 24142384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Kinetic study on the photo-catalytic degradation of reactive brilliant X-3B by UVC and UVA].
    Yang J; Zhang P; Liu L; Zeng QF
    Huan Jing Ke Xue; 2011 Nov; 32(11):3365-71. PubMed ID: 22295636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The performance of the microbial fuel cell-coupled constructed wetland system and the influence of the anode bacterial community.
    Li T; Fang Z; Yu R; Cao X; Song H; Li X
    Environ Technol; 2016; 37(13):1683-92. PubMed ID: 26652300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1.
    Tan L; He M; Song L; Fu X; Shi S
    Bioresour Technol; 2016 Mar; 203():287-94. PubMed ID: 26744802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell.
    Sun J; Hu YY; Bi Z; Cao YQ
    Bioresour Technol; 2009 Jul; 100(13):3185-92. PubMed ID: 19269168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of cyclic anaerobic-aerobic conditions on biodegradation of azo dyes.
    Yaşar S; Cirik K; Cinar O
    Bioprocess Biosyst Eng; 2012 Mar; 35(3):449-57. PubMed ID: 21858702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Degradation of reactive red X-3B by ultra sound synergized with zero-valent iron].
    Tang XH; Huang LS; Mo CH; Li MY
    Huan Jing Ke Xue; 2006 Jun; 27(6):1123-6. PubMed ID: 16921947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process.
    Lu X; Yang B; Chen J; Sun R
    J Hazard Mater; 2009 Jan; 161(1):241-5. PubMed ID: 18462873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Azo dye as part of co-substrate in a biofilm electrode reactor-microbial fuel cell coupled system and an analysis of the relevant microorganisms.
    Cao X; Zhang S; Wang H; Li X
    Chemosphere; 2019 Feb; 216():742-748. PubMed ID: 30391896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced degradation of reactive brilliant red X-3B by photocatalysis integrated with micro-electrolysis.
    Cheng G; Zhang Y; Sun L; Wan J; Li Z; Dang C; Fu J
    Environ Sci Pollut Res Int; 2021 Sep; 28(36):49899-49912. PubMed ID: 33945093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Azo dye degradation pathway and bacterial community structure in biofilm electrode reactors.
    Cao X; Wang H; Zhang S; Nishimura O; Li X
    Chemosphere; 2018 Oct; 208():219-225. PubMed ID: 29870911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of microbial community for X-3B wastewater decolorization coping with high-salt and metal ions conditions.
    Tan L; Qu Y; Zhou J; Ma F; Li A
    Bioresour Technol; 2009 Jun; 100(12):3003-9. PubMed ID: 19230654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A batch kinetic study on decolorization and inhibition of Reactive Black 5 and Direct Brown 2 in an anaerobic mixed culture.
    Işik M; Sponza DT
    Chemosphere; 2004 Apr; 55(1):119-28. PubMed ID: 14720554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.