These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28132189)

  • 1. Electrocatalytic water treatment using carbon nanotube filters modified with metal oxides.
    Yang SY; Vecitis CD; Park H
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1036-1043. PubMed ID: 28132189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry.
    Gao G; Vecitis CD
    Environ Sci Technol; 2011 Nov; 45(22):9726-34. PubMed ID: 21967752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bismuth-doped tin oxide-coated carbon nanotube network: improved anode stability and efficiency for flow-through organic electrooxidation.
    Liu H; Vajpayee A; Vecitis CD
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10054-66. PubMed ID: 24040859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical CNT filter functionalized with metal-organic framework for one-step antimonite decontamination.
    Tian F; Ren Y; Wu W; Liu Y
    Chemosphere; 2023 Sep; 335():139047. PubMed ID: 37263511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter.
    Liu Y; Liu F; Qi Z; Shen C; Li F; Ma C; Huang M; Wang Z; Li J
    Environ Pollut; 2019 Aug; 251():72-80. PubMed ID: 31071635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption.
    Liu H; Zuo K; Vecitis CD
    Environ Sci Technol; 2014 Dec; 48(23):13871-9. PubMed ID: 25369519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the anodic oxidation of 4-chloro-3-methyl phenol in aqueous solution using Ti/SnO2-Sb/PbO2 electrodes.
    Song S; Zhan L; He Z; Lin L; Tu J; Zhang Z; Chen J; Xu L
    J Hazard Mater; 2010 Mar; 175(1-3):614-21. PubMed ID: 19914775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube membrane stack for flow-through sequential regenerative electro-Fenton.
    Gao G; Zhang Q; Hao Z; Vecitis CD
    Environ Sci Technol; 2015 Feb; 49(4):2375-83. PubMed ID: 25602741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doped carbon nanotube networks for electrochemical filtration of aqueous phenol: electrolyte precipitation and phenol polymerization.
    Gao G; Vecitis CD
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1478-89. PubMed ID: 22313807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of Ti/SnO(2)-Sb(2)O(3)-Nb(2)O(5)/PbO(2) thin film as electrode material for the degradation of phenol.
    Yang X; Zou R; Huo F; Cai D; Xiao D
    J Hazard Mater; 2009 May; 164(1):367-73. PubMed ID: 18799264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes.
    Zhu L; Zhai J; Yang R; Tian C; Guo L
    Biosens Bioelectron; 2007 May; 22(11):2768-73. PubMed ID: 17267199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous efficient removal and inactivation mechanism of E. coli by bismuth-doped SnO
    Wang P; Deng Y; Hao L; Zhao L; Zhang X; Deng C; Liu H; Zhu M
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):11399-11409. PubMed ID: 30805840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergism of ozonation and electrochemical filtration during advanced organic oxidation.
    Souza-Chaves BM; Dezotti M; Vecitis CD
    J Hazard Mater; 2020 Jan; 382():121085. PubMed ID: 31465946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into estrogenic activity removal using carbon nanotube electrochemical filter.
    Cunha GDS; Souza-Chaves BM; Bila DM; Bassin JP; Vecitis CD; Dezotti M
    Sci Total Environ; 2019 Aug; 678():448-456. PubMed ID: 31077923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effectiveness and adsorption mechanism of iron-carbon nanotube composites for removing phosphate from aqueous environments.
    Adil S; Kim JO
    Chemosphere; 2023 Feb; 313():137629. PubMed ID: 36565757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid phase catalytic hydrogenation reduction of Cr(VI) using highly stable and active Pd/CNT catalysts coated by N-doped carbon.
    Li M; He J; Tang Y; Sun J; Fu H; Wan Y; Qu X; Xu Z; Zheng S
    Chemosphere; 2019 Feb; 217():742-753. PubMed ID: 30448754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic detection of insulin at RuOx/carbon nanotube-modified carbon electrodes.
    Wang J; Tangkuaram T; Loyprasert S; Vazquez-Alvarez T; Veerasai W; Kanatharana P; Thavarungkul P
    Anal Chim Acta; 2007 Jan; 581(1):1-6. PubMed ID: 17386417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of sulfite by pervaporation-flow injection with amperometric detection using copper hexacyanoferrate-carbon nanotube modified carbon paste electrode.
    Alamo LS; Tangkuaram T; Satienperakul S
    Talanta; 2010 Jun; 81(4-5):1793-9. PubMed ID: 20441975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors.
    Yang M; Yang Y; Liu Y; Shen G; Yu R
    Biosens Bioelectron; 2006 Jan; 21(7):1125-31. PubMed ID: 15885999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-rapid detoxification of Sb(III) using a flow-through electro-fenton system.
    Liu Y; Zhang J; Liu F; Shen C; Li F; Huang M; Yang B; Wang Z; Sand W
    Chemosphere; 2020 Apr; 245():125604. PubMed ID: 31855755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.