These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 28132502)

  • 1. Contribution of Nano- to Microscale Roughness to Heterogeneity: Closing the Gap between Unfavorable and Favorable Colloid Attachment Conditions.
    Rasmuson A; Pazmino E; Assemi S; Johnson WP
    Environ Sci Technol; 2017 Feb; 51(4):2151-2160. PubMed ID: 28132502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic versus Surface Interaction Impacts of Roughness in Closing the Gap between Favorable and Unfavorable Colloid Transport Conditions.
    Rasmuson A; VanNess K; Ron CA; Johnson WP
    Environ Sci Technol; 2019 Mar; 53(5):2450-2459. PubMed ID: 30762346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of DLVO energy map to evaluate interactions between spherical colloids and rough surfaces.
    Shen C; Wang F; Li B; Jin Y; Wang LP; Huang Y
    Langmuir; 2012 Oct; 28(41):14681-92. PubMed ID: 23006065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deposition of latex colloids at rough mineral surfaces: an analogue study using nanopatterned surfaces.
    Krishna Darbha G; Fischer C; Michler A; Luetzenkirchen J; Schäfer T; Heberling F; Schild D
    Langmuir; 2012 Apr; 28(16):6606-17. PubMed ID: 22448713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Nanoparticle and Colloid Attachment on Unfavorable Mineral Surfaces Using Representative Discrete Heterogeneity.
    Trauscht J; Pazmino E; Johnson WP
    Langmuir; 2015 Sep; 31(34):9366-78. PubMed ID: 26263019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotation and Retention Dynamics of Rod-Shaped Colloids with Surface Charge Heterogeneity in Sphere-in-Cell Porous Media Model.
    Li K; Ma H
    Langmuir; 2019 Apr; 35(16):5471-5483. PubMed ID: 30925063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
    Torkzaban S; Kim HN; Simunek J; Bradford SA
    Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Favorable and unfavorable attachment of colloids in a discrete sandstone fracture.
    Spanik S; Rrokaj E; Mondal PK; Sleep BE
    J Contam Hydrol; 2021 Dec; 243():103919. PubMed ID: 34763243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining Parameters and Mechanisms of Colloid Retention and Release in Porous Media.
    Bradford SA; Torkzaban S
    Langmuir; 2015 Nov; 31(44):12096-105. PubMed ID: 26484563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of colloids from primary minimum contact under unfavorable conditions by perturbations in ionic strength and flow rate.
    Pazmino E; Trauscht J; Johnson WP
    Environ Sci Technol; 2014 Aug; 48(16):9227-35. PubMed ID: 25020030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of Nanoscale Roughness to Anomalous Colloid Retention and Stability Behavior.
    Bradford SA; Kim H; Shen C; Sasidharan S; Shang J
    Langmuir; 2017 Sep; 33(38):10094-10105. PubMed ID: 28846425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why Variant Colloid Transport Behaviors Emerge among Identical Individuals in Porous Media When Colloid-Surface Repulsion Exists.
    Johnson WP; Rasmuson A; Pazmiño E; Hilpert M
    Environ Sci Technol; 2018 Jul; 52(13):7230-7239. PubMed ID: 29888906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virus-sized colloid transport in a single pore: model development and sensitivity analysis.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A
    J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical role of surface roughness on colloid retention and release in porous media.
    Torkzaban S; Bradford SA
    Water Res; 2016 Jan; 88():274-284. PubMed ID: 26512805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media.
    Torkzaban S; Bradford SA; Walker SL
    Langmuir; 2007 Sep; 23(19):9652-60. PubMed ID: 17705511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observed and simulated fluid drag effects on colloid deposition in the presence of an energy barrier in an impinging jet system.
    Johnson WP; Tong M
    Environ Sci Technol; 2006 Aug; 40(16):5015-21. PubMed ID: 16955901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific retention of colloids at rough rock surfaces.
    Darbha GK; Fischer C; Luetzenkirchen J; Schäfer T
    Environ Sci Technol; 2012 Sep; 46(17):9378-87. PubMed ID: 22861645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power law size-distributed heterogeneity explains colloid retention on soda lime glass in the presence of energy barriers.
    Pazmino E; Trauscht J; Dame B; Johnson WP
    Langmuir; 2014 May; 30(19):5412-21. PubMed ID: 24773424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Unified Force and Torque Balance for Colloid Transport: Predicting Attachment and Mobilization under Favorable and Unfavorable Conditions.
    VanNess K; Rasmuson A; Ron CA; Johnson WP
    Langmuir; 2019 Jul; 35(27):9061-9070. PubMed ID: 31181161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Roughness Impacts on Granular Media Filtration at Favorable Deposition Conditions: Experiments and Modeling.
    Jin C; Normani SD; Emelko MB
    Environ Sci Technol; 2015 Jul; 49(13):7879-88. PubMed ID: 26053116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.