These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28132854)

  • 41. Perspectives of New Advances in the Pathogenesis of Vitiligo: From Oxidative Stress to Autoimmunity.
    Wang Y; Li S; Li C
    Med Sci Monit; 2019 Feb; 25():1017-1023. PubMed ID: 30723188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Melanocyte-specific cell mediated immune response in vitiliginous Smyth line chickens.
    Wang X; Erf GF
    J Autoimmun; 2003 Sep; 21(2):149-60. PubMed ID: 12935784
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Keratinocyte-Derived Chemokines Orchestrate T-Cell Positioning in the Epidermis during Vitiligo and May Serve as Biomarkers of Disease.
    Richmond JM; Bangari DS; Essien KI; Currimbhoy SD; Groom JR; Pandya AG; Youd ME; Luster AD; Harris JE
    J Invest Dermatol; 2017 Feb; 137(2):350-358. PubMed ID: 27686391
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Autoimmune aspects of vitiligo.
    Kemp EH; Waterman EA; Weetman AP
    Autoimmunity; 2001; 34(1):65-77. PubMed ID: 11681494
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neurogenic dysregulation, oxidative stress, autoimmunity, and melanocytorrhagy in vitiligo: can they be interconnected?
    Namazi MR
    Pigment Cell Res; 2007 Oct; 20(5):360-3. PubMed ID: 17850509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human skin melanocyte migration towards stromal cell-derived factor-1α demonstrated by optical real-time cell mobility assay: modulation of their chemotactic ability by α-melanocyte-stimulating hormone.
    Yamauchi A; Hadjur C; Takahashi T; Suzuki I; Hirose K; Mahe YF
    Exp Dermatol; 2013 Oct; 22(10):664-7. PubMed ID: 24079738
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New insights into immune mechanisms of vitiligo.
    Boniface K; Taïeb A; Seneschal J
    G Ital Dermatol Venereol; 2016 Feb; 151(1):44-54. PubMed ID: 26512930
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular and functional bases of self-antigen recognition in long-term persistent melanocyte-specific CD8+ T cells in one vitiligo patient.
    Mantovani S; Garbelli S; Palermo B; Campanelli R; Brazzelli V; Borroni G; Martinetti M; Benvenuto F; Merlini G; della Cuna GR; Rivoltini L; Giachino C
    J Invest Dermatol; 2003 Aug; 121(2):308-14. PubMed ID: 12880423
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oxidative stress drives CD8
    Li S; Zhu G; Yang Y; Jian Z; Guo S; Dai W; Shi Q; Ge R; Ma J; Liu L; Li K; Luan Q; Wang G; Gao T; Li C
    J Allergy Clin Immunol; 2017 Jul; 140(1):177-189.e9. PubMed ID: 27826097
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resident Memory and Recirculating Memory T Cells Cooperate to Maintain Disease in a Mouse Model of Vitiligo.
    Richmond JM; Strassner JP; Rashighi M; Agarwal P; Garg M; Essien KI; Pell LS; Harris JE
    J Invest Dermatol; 2019 Apr; 139(4):769-778. PubMed ID: 30423329
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vitiligo: Focus on Clinical Aspects, Immunopathogenesis, and Therapy.
    Boniface K; Seneschal J; Picardo M; Taïeb A
    Clin Rev Allergy Immunol; 2018 Feb; 54(1):52-67. PubMed ID: 28685247
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Altered levels of Ets-1 transcription factor and matrix metalloproteinases in melanocytes from patients with vitiligo.
    Kumar R; Parsad D; Kanwar AJ; Kaul D
    Br J Dermatol; 2011 Aug; 165(2):285-91. PubMed ID: 21428970
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of oxidative stress and autoimmunity in onset and progression of vitiligo.
    Laddha NC; Dwivedi M; Mansuri MS; Singh M; Gani AR; Yeola AP; Panchal VN; Khan F; Dave DJ; Patel A; Madhavan SE; Gupta R; Marfatia Z; Marfatia YS; Begum R
    Exp Dermatol; 2014 May; 23(5):352-3. PubMed ID: 24628992
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Narrow Band Ultraviolet B Treatment for Human Vitiligo Is Associated with Proliferation, Migration, and Differentiation of Melanocyte Precursors.
    Goldstein NB; Koster MI; Hoaglin LG; Spoelstra NS; Kechris KJ; Robinson SE; Robinson WA; Roop DR; Norris DA; Birlea SA
    J Invest Dermatol; 2015 Aug; 135(8):2068-2076. PubMed ID: 25822579
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Editorial: in-and-out blood vessels: new insights into T cell reverse transmigration.
    Raffaghello L; Pistoia V
    J Leukoc Biol; 2009 Dec; 86(6):1271-3. PubMed ID: 19948520
    [No Abstract]   [Full Text] [Related]  

  • 56. Mouse Model for Human Vitiligo.
    Riding RL; Richmond JM; Harris JE
    Curr Protoc Immunol; 2019 Feb; 124(1):e63. PubMed ID: 30253067
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An immunohistological study of cutaneous lymphocytes in vitiligo.
    Badri AM; Todd PM; Garioch JJ; Gudgeon JE; Stewart DG; Goudie RB
    J Pathol; 1993 Jun; 170(2):149-55. PubMed ID: 8345407
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cytokines: the yin and yang of vitiligo pathogenesis.
    Singh M; Kotnis A; Jadeja SD; Mondal A; Mansuri MS; Begum R
    Expert Rev Clin Immunol; 2019 Feb; 15(2):177-188. PubMed ID: 30462555
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site.
    van den Wijngaard R; Wankowicz-Kalinska A; Le Poole C; Tigges B; Westerhof W; Das P
    Lab Invest; 2000 Aug; 80(8):1299-309. PubMed ID: 10950121
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spontaneous immunological activities in the target tissue of vitiligo-prone Smyth and vitiligo-susceptible Brown lines of chicken.
    Falcon DM; Byrne KA; Sales MA; Erf GF
    Front Immunol; 2024; 15():1386727. PubMed ID: 38720888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.