These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28133379)

  • 1. Telerehabilitation approach for patients with hand impairment.
    Staszuk A; Wiatrak B; Tadeusiewicz R; Karuga-Kuźniewska E; Rybak Z
    Acta Bioeng Biomech; 2016; 18(4):55-62. PubMed ID: 28133379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Home-based telerehabilitation after stroke].
    Keidel M; Vauth F; Richter J; Hoffmann B; Soda H; Griewing B; Scibor M
    Nervenarzt; 2017 Feb; 88(2):113-119. PubMed ID: 28101620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Telemedicine].
    Meyding-Lamadé U
    Nervenarzt; 2017 Feb; 88(2):111-112. PubMed ID: 28091695
    [No Abstract]   [Full Text] [Related]  

  • 4. Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient's home: study protocol of a randomized clinical trial.
    Kairy D; Veras M; Archambault P; Hernandez A; Higgins J; Levin MF; Poissant L; Raz A; Kaizer F
    Contemp Clin Trials; 2016 Mar; 47():49-53. PubMed ID: 26655433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation.
    Mousavi Hondori H; Khademi M; Dodakian L; Cramer SC; Lopes CV
    Stud Health Technol Inform; 2013; 184():279-85. PubMed ID: 23400171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technical and patient performance using a virtual reality-integrated telerehabilitation system: preliminary finding.
    Deutsch JE; Lewis JA; Burdea G
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):30-5. PubMed ID: 17436873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise recognition for Kinect-based telerehabilitation.
    Antón D; Goñi A; Illarramendi A
    Methods Inf Med; 2015; 54(2):145-55. PubMed ID: 25301322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A qualitative study on user acceptance of a home-based stroke telerehabilitation system.
    Chen Y; Chen Y; Zheng K; Dodakian L; See J; Zhou R; Chiu N; Augsburger R; McKenzie A; Cramer SC
    Top Stroke Rehabil; 2020 Mar; 27(2):81-92. PubMed ID: 31682789
    [No Abstract]   [Full Text] [Related]  

  • 9. The Jerusalem TeleRehabilitation System, a new low-cost, haptic rehabilitation approach.
    Sugarman H; Dayan E; Weisel-Eichler A; Tiran J
    Cyberpsychol Behav; 2006 Apr; 9(2):178-82. PubMed ID: 16640475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Quality of Life and Depression After Stroke Through Telerehabilitation.
    Linder SM; Rosenfeldt AB; Bay RC; Sahu K; Wolf SL; Alberts JL
    Am J Occup Ther; 2015; 69(2):6902290020p1-10. PubMed ID: 26122686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PC-based telerehabilitation system with force feedback.
    Popescu V; Burdea G; Bouzit M; Girone M; Hentz V
    Stud Health Technol Inform; 1999; 62():261-7. PubMed ID: 10538369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Kinect based intelligent e-rehabilitation system in physical therapy.
    Gal N; Andrei D; Nemeş DI; Nădăşan E; Stoicu-Tivadar V
    Stud Health Technol Inform; 2015; 210():489-93. PubMed ID: 25991195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous rehabilitation at stroke patients home for balance and gait: safety, usability and compliance of a virtual reality system.
    Held JP; Ferrer B; Mainetti R; Steblin A; Hertler B; Moreno-Conde A; Dueñas A; Pajaro M; Parra-Calderón CL; Vargiu E; Josè Zarco M; Barrera M; Echevarria C; Jódar-Sánchez F; Luft AR; Borghese NA
    Eur J Phys Rehabil Med; 2018 Aug; 54(4):545-553. PubMed ID: 28949120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding stroke telerehabilitation services to rural veterans: a qualitative study on patient experiences using the robotic stroke therapy delivery and monitoring system program.
    Cherry CO; Chumbler NR; Richards K; Huff A; Wu D; Tilghman LM; Butler A
    Disabil Rehabil Assist Technol; 2017 Jan; 12(1):21-27. PubMed ID: 26135221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a Kinect-based telerehabilitation system with total hip replacement patients.
    Antón D; Nelson M; Russell T; Goñi A; Illarramendi A
    J Telemed Telecare; 2016 Apr; 22(3):192-7. PubMed ID: 26130735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telerehabilitation using virtual reality task can improve balance in patients with stroke.
    Cikajlo I; Rudolf M; Goljar N; Burger H; Matjačić Z
    Disabil Rehabil; 2012; 34(1):13-8. PubMed ID: 21864205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive rehabilitation games.
    Barzilay O; Wolf A
    J Electromyogr Kinesiol; 2013 Feb; 23(1):182-9. PubMed ID: 23141481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HRV Analysis to Identify Stages of Home-based Telerehabilitation Exercise.
    Jeong IC; Finkelstein J
    Stud Health Technol Inform; 2014; 202():287-90. PubMed ID: 25000073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Serious Game for Upper Limb Stroke Rehabilitation Using Biofeedback and Mirror-Neurons Based Training.
    Cargnin DJ; Cordeiro d'Ornellas M; Cervi Prado AL
    Stud Health Technol Inform; 2015; 216():348-52. PubMed ID: 26262069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinect-based virtual rehabilitation and evaluation system for upper limb disorders: A case study.
    Ding WL; Zheng YZ; Su YP; Li XL
    J Back Musculoskelet Rehabil; 2018; 31(4):611-621. PubMed ID: 29578471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.