These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28133388)

  • 1. High energy electron irradiation of interstellar carbonaceous dust analogs: Cosmic ray effects on the carriers of the 3.4 µm absorption band.
    Maté B; Molpeceres G; Jiménez-Redondo M; Tanarro I; Herrero VJ
    Astrophys J; 2016 Nov; 831(1):. PubMed ID: 28133388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interstellar C-H stretching band near 3.4 microns: constraints on the composition of organic material in the diffuse interstellar medium.
    Sandford SA; Allamandola LJ; Tielens AG; Sellgren K; Tapia M; Pendleton Y
    Astrophys J; 1991 Apr; 371():607-20. PubMed ID: 11538103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma generation and processing of interstellar carbonaceous dust analogs.
    Peláez RJ; Maté B; Tanarro I; Molpeceres G; Jiménez-Redondo M; Timón V; Escribano R; Herrero VJ
    Plasma Sources Sci Technol; 2018 Mar; 27():035007. PubMed ID: 29983483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of organic matter in interstellar grains.
    Pendleton YJ
    Orig Life Evol Biosph; 1997 Jun; 27(1-3):53-78. PubMed ID: 9150567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of carbonaceous dust analogues and glycine under UV irradiation and electron bombardment.
    Maté B; Tanarro I; Moreno MA; Jiménez-Redondo M; Escribano R; Herrero VJ
    Faraday Discuss; 2014; 168():267-85. PubMed ID: 25302385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared spectroscopy of dense clouds in the C-H stretch region: methanol and "diamonds.".
    Allamandola LJ; Sandford SA; Tielens AG; Herbst TM
    Astrophys J; 1992 Nov; 399():134-46. PubMed ID: 11540063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cycling of carbon into and out of dust.
    Jones AP; Ysard N; Köhler M; Fanciullo L; Bocchio M; Micelotta E; Verstraete L; Guillet V
    Faraday Discuss; 2014; 168():313-26. PubMed ID: 25302387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The infrared spectrum of the Galactic center and the composition of interstellar dust.
    Tielens AG; Wooden DH; Allamandola LJ; Bregman J; Witteborn FC
    Astrophys J; 1996 Apr; 461(1 Pt 1):210-22. PubMed ID: 11539170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The galactic distribution of aliphatic hydrocarbons in the diffuse interstellar medium.
    Sandford SA; Pendleton YJ; Allamandola LJ
    Astrophys J; 1995 Feb; 440(2 Pt 1):697-705. PubMed ID: 11538444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-energy electron-induced chemistry of condensed methanol: implications for the interstellar synthesis of prebiotic molecules.
    Boamah MD; Sullivan KK; Shulenberger KE; Soe CM; Jacob LM; Yhee FC; Atkinson KE; Boyer MC; Haines DR; Arumainayagam CR
    Faraday Discuss; 2014; 168():249-66. PubMed ID: 25302384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dust evolution, a global view: II. Top-down branching, nanoparticle fragmentation and the mystery of the diffuse interstellar band carriers.
    Jones AP
    R Soc Open Sci; 2016 Dec; 3(12):160223. PubMed ID: 28083089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GALACTIC COSMIC RAYS IN THE LOCAL INTERSTELLAR MEDIUM:
    Cummings AC; Stone EC; Heikkila BC; Lal N; Webber WR; Jóhannesson G; Moskalenko IV; Orlando E; Porter TA
    Astrophys J; 2016 Nov; 831(1):. PubMed ID: 34646042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking the organic refractory component from interstellar dust to comets.
    Greenberg JM; Li A
    Adv Space Res; 1999; 24(4):497-504. PubMed ID: 11543337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared spectroscopy of the proto-planetary nebula CRL 618 and the origin of the hydrocarbon dust component in the interstellar medium.
    Chiar JE; Pendleton YJ; Geballe TR; Tielens AG
    Astrophys J; 1998 Nov; 507(1 Pt 1):281-6. PubMed ID: 11542820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cosmic-ray astrochemistry.
    Indriolo N; McCall BJ
    Chem Soc Rev; 2013 Oct; 42(19):7763-73. PubMed ID: 23812538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enhanced cosmic-ray flux towards zeta Persei inferred from a laboratory study of the H3+-e- recombination rate.
    McCall BJ; Huneycutt AJ; Saykally RJ; Geballe TR; Djuric N; Dunn GH; Semaniak J; Novotny O; Al-Khalili A; Ehlerding A; Hellberg F; Kalhori S; Neau A; Thomas R; Osterdahl F; Larsson M
    Nature; 2003 Apr; 422(6931):500-2. PubMed ID: 12673244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon and silicate grains in the laboratory as analogues of cosmic dust.
    Mennella V; Brucato JR; Colangeli L
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar; 57(4):787-95. PubMed ID: 11345254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diamonds in dense molecular clouds: a challenge to the standard interstellar medium paradigm.
    Allamandola LJ; Sandford SA; Tielens AG; Herbst TM
    Science; 1993 Apr; 260():64-6. PubMed ID: 11538059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radioresistance of Adenine to Cosmic Rays.
    Vignoli Muniz GS; Mejía CF; Martinez R; Auge B; Rothard H; Domaracka A; Boduch P
    Astrobiology; 2017 Apr; 17(4):298-308. PubMed ID: 28418703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory investigation of the contribution of complex aromatic/aliphatic polycyclic hybrid molecular structures to interstellar ultraviolet extinction and infrared emission.
    Arnoult KM; Wdowiak TJ; Beegle LW
    Astrophys J; 2000 Jun; 535(2 Pt 1):815-22. PubMed ID: 11543517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.