BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28133394)

  • 1. Energy Harvesting for GaAs Photovoltaics Under Low-Flux Indoor Lighting Conditions.
    Teran AS; Moon E; Lim W; Kim G; Lee I; Blaauw D; Phillips JD
    IEEE Trans Electron Devices; 2016 Jul; 63(7):2820-2825. PubMed ID: 28133394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Organic Energy-Harvesting Devices and Modules for Self-Sustainable Power Generation under Ambient Indoor Lighting Environments.
    Arai R; Furukawa S; Hidaka Y; Komiyama H; Yasuda T
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9259-9264. PubMed ID: 30789698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small-area Si Photovoltaics for Low-Flux Infrared Energy Harvesting.
    Moon E; Blaauw D; Phillips JD
    IEEE Trans Electron Devices; 2017 Jan; 64(1):15-20. PubMed ID: 34650311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Efficiency Photovoltaic Modules on a Chip for Millimeter-Scale Energy Harvesting.
    Moon E; Lee I; Blaauw D; Phillips JD
    Prog Photovolt; 2019 Jun; 27(6):540-546. PubMed ID: 34354330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress in indoor organic photovoltaics.
    Ryu HS; Park SY; Lee TH; Kim JY; Woo HY
    Nanoscale; 2020 Mar; 12(10):5792-5804. PubMed ID: 32129404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared Energy Harvesting in Millimeter-Scale GaAs Photovoltaics.
    Moon E; Blaauw D; Phillips JD
    IEEE Trans Electron Devices; 2017 Nov; 64(11):4554-4560. PubMed ID: 29129936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the Non-Radiative Recombination of Mixed-Halide Perovskites with Optimal Bandgap for Indoor Photovoltaics.
    Li Y; Li R; Lin Q
    Small; 2022 Jul; 18(26):e2202028. PubMed ID: 35616062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indoor light energy harvesting for battery-powered sensors using small photovoltaic modules.
    Shore A; Roller J; Bergeson J; Hamadani BH
    Energy Sci Eng; 2021 Nov; 9(11):. PubMed ID: 37533957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological/metal oxide composite transport layers cast from green solvents for boosting light harvesting response of organic photovoltaic cells indoors.
    Dagar J; Brown TM
    Nanotechnology; 2022 Jul; 33(40):. PubMed ID: 35700718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-Junction GaAs Photovoltaics for Low Irradiance Wireless Power Transfer in Submillimeter-Scale Sensor Nodes.
    Moon E; Barrow M; Lim J; Blaauw D; Phillips JD
    IEEE J Photovolt; 2020 Nov; 10(6):1721-1726. PubMed ID: 33224555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Over 31% efficient indoor organic photovoltaics enabled by simultaneously reduced trap-assisted recombination and non-radiative recombination voltage loss.
    Zhou X; Wu H; Bothra U; Chen X; Lu G; Zhao H; Zhao C; Luo Q; Lu G; Zhou K; Kabra D; Ma Z; Ma W
    Mater Horiz; 2023 Feb; 10(2):566-575. PubMed ID: 36458496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transparent Thin-Film Silicon Solar Cells for Indoor Light Harvesting with Conversion Efficiencies of 36% without Photodegradation.
    Kim G; Lim JW; Kim J; Yun SJ; Park MA
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27122-27130. PubMed ID: 32378875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Performance of Organic Photovoltaics under Indoor and Outdoor Conditions: Effects of Chlorination of Donor Polymers.
    Je HI; Shin EY; Lee KJ; Ahn H; Park S; Im SH; Kim YH; Son HJ; Kwon SK
    ACS Appl Mater Interfaces; 2020 May; 12(20):23181-23189. PubMed ID: 32323523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting.
    Chen CY; Jian ZH; Huang SH; Lee KM; Kao MH; Shen CH; Shieh JM; Wang CL; Chang CW; Lin BZ; Lin CY; Chang TK; Chi Y; Chi CY; Wang WT; Tai Y; Lu MD; Tung YL; Chou PT; Wu WT; Chow TJ; Chen P; Luo XH; Lee YL; Wu CC; Chen CM; Yeh CY; Fan MS; Peng JD; Ho KC; Liu YN; Lee HY; Chen CY; Lin HW; Yen CT; Huang YC; Tsao CS; Ting YC; Wei TC; Wu CG
    J Phys Chem Lett; 2017 Apr; 8(8):1824-1830. PubMed ID: 28387117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.
    Han N; Yang ZX; Wang F; Dong G; Yip S; Liang X; Hung TF; Chen Y; Ho JC
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20454-9. PubMed ID: 26284305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-Dimensional Grain Boundary Stress Release for Flexible Perovskite Indoor Photovoltaics.
    Chen CH; Su ZH; Lou YH; Yu YJ; Wang KL; Liu GL; Shi YR; Chen J; Cao JJ; Zhang L; Gao XY; Wang ZK
    Adv Mater; 2022 Apr; 34(16):e2200320. PubMed ID: 35201633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photovoltaic Characterization under Artificial Low Irradiance Conditions Using Reference Solar Cells.
    Hamadani BH; Campanelli MB
    IEEE J Photovolt; 2020; 10(4):. PubMed ID: 33457066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced Surface Recombination in Extended-Perimeter LEDs toward Electroluminescent Cooling.
    van der Krabben LM; Gruginskie N; van Eerden M; van Gastel J; Mulder P; Bauhuis GJ; Khusyainov D; Afanasiev D; Vlieg E; Schermer JJ
    ACS Appl Electron Mater; 2024 Feb; 6(2):1483-1492. PubMed ID: 38435802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-Fatigue Tandem Organic Photovoltaics for Indoor Illumination.
    Li H; Zheng Z; Yang S; Wang T; Yang Y; Tang Y; Zhang S; Hou J
    Adv Mater; 2024 Apr; 36(16):e2311476. PubMed ID: 38181179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1 cm
    Cui Y; Yao H; Zhang T; Hong L; Gao B; Xian K; Qin J; Hou J
    Adv Mater; 2019 Oct; 31(42):e1904512. PubMed ID: 31490601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.