BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28133665)

  • 1. Backbone-modified oligonucleotides for tuning the cellular uptake behaviour of spherical nucleic acids.
    Song WC; Kim KR; Park M; Lee KE; Ahn DR
    Biomater Sci; 2017 Feb; 5(3):412-416. PubMed ID: 28133665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Sequence-Specific Cellular Uptake of Spherical Nucleic Acid Nanoparticle Conjugates.
    Narayan SP; Choi CH; Hao L; Calabrese CM; Auyeung E; Zhang C; Goor OJ; Mirkin CA
    Small; 2015 Sep; 11(33):4173-82. PubMed ID: 26097111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates.
    Choi CH; Hao L; Narayan SP; Auyeung E; Mirkin CA
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7625-30. PubMed ID: 23613589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling the Mechanisms of Peptide-Mediated Delivery of Nucleic Acids Using Electron Microscopy.
    Margus H; Juks C; Pooga M
    Methods Mol Biol; 2015; 1324():149-62. PubMed ID: 26202268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of Spherical Nucleic Acid Nanoparticles as Delivery Systems.
    Mokhtarzadeh A; Vahidnezhad H; Youssefian L; Mosafer J; Baradaran B; Uitto J
    Trends Mol Med; 2019 Dec; 25(12):1066-1079. PubMed ID: 31703931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PepFects and NickFects for the Intracellular Delivery of Nucleic Acids.
    Arukuusk P; Pärnaste L; Hällbrink M; Langel Ü
    Methods Mol Biol; 2015; 1324():303-15. PubMed ID: 26202277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow spherical nucleic acids for intracellular gene regulation based upon biocompatible silica shells.
    Young KL; Scott AW; Hao L; Mirkin SE; Liu G; Mirkin CA
    Nano Lett; 2012 Jul; 12(7):3867-71. PubMed ID: 22725653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vectorization of Nucleic Acids for Therapeutic Approach: Tutorial Review.
    Geinguenaud F; Guenin E; Lalatonne Y; Motte L
    ACS Chem Biol; 2016 May; 11(5):1180-91. PubMed ID: 26950048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Behavior of Ultrasmall Spherical Nucleic Acids.
    Callmann CE; Vasher MK; Das A; Kusmierz CD; Mirkin CA
    Small; 2023 Jun; 19(24):e2300097. PubMed ID: 36905236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunomodulatory spherical nucleic acids.
    Radovic-Moreno AF; Chernyak N; Mader CC; Nallagatla S; Kang RS; Hao L; Walker DA; Halo TL; Merkel TJ; Rische CH; Anantatmula S; Burkhart M; Mirkin CA; Gryaznov SM
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):3892-7. PubMed ID: 25775582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular fate of spherical nucleic acid nanoparticle conjugates.
    Wu XA; Choi CH; Zhang C; Hao L; Mirkin CA
    J Am Chem Soc; 2014 May; 136(21):7726-33. PubMed ID: 24841494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between Poly(ethylene glycol) Modifications on RNA-Spherical Nucleic Acid Conjugates and Cellular Uptake and Circulation Time.
    Chinen AB; Ferrer JR; Merkel TJ; Mirkin CA
    Bioconjug Chem; 2016 Nov; 27(11):2715-2721. PubMed ID: 27762539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-Controlled Spherical Nucleic Acids: Gene Silencing, Encapsulation, and Cellular Uptake.
    Kaviani S; Fakih HH; Asohan J; Katolik A; Damha MJ; Sleiman HF
    Nucleic Acid Ther; 2023 Aug; 33(4):265-276. PubMed ID: 37196168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence Multiplicity within Spherical Nucleic Acids.
    Huang ZN; Cole LE; Callmann CE; Wang S; Mirkin CA
    ACS Nano; 2020 Jan; 14(1):1084-1092. PubMed ID: 31917535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Nanoplasmonic Analysis of Spherical Nucleic Acids Clusters in Single Cells.
    Liu M; Mao X; Huang L; Fan C; Tian Y; Li Q
    Anal Chem; 2020 Jan; 92(1):1333-1339. PubMed ID: 31820626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Investigation into the Resistance of Spherical Nucleic Acids against DNA Enzymatic Degradation.
    Kyriazi ME; El-Sagheer AH; Medintz IL; Brown T; Kanaras AG
    Bioconjug Chem; 2022 Jan; 33(1):219-225. PubMed ID: 35001632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valency-Controlled Molecular Spherical Nucleic Acids with Tunable Biosensing Performances.
    Hu X; Ke G; Liu L; Fu X; Kong G; Xiong M; Chen M; Zhang XB
    Anal Chem; 2019 Sep; 91(17):11374-11379. PubMed ID: 31402646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, Physicochemical, and Biological Evaluation of Spherical Nucleic Acids for RNAi-Based Therapy in Glioblastoma.
    Tommasini-Ghelfi S; Lee A; Mirkin CA; Stegh AH
    Methods Mol Biol; 2019; 1974():371-391. PubMed ID: 31099015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptides for nucleic acid delivery.
    Lehto T; Ezzat K; Wood MJA; El Andaloussi S
    Adv Drug Deliv Rev; 2016 Nov; 106(Pt A):172-182. PubMed ID: 27349594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in gene delivery nanoplatforms based on spherical nucleic acids.
    Valatabar N; Oroojalian F; Kazemzadeh M; Mokhtarzadeh AA; Safaralizadeh R; Sahebkar A
    J Nanobiotechnology; 2024 Jul; 22(1):386. PubMed ID: 38951806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.