These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 28133760)

  • 1. Capitalizing on disaster: Establishing chromatin specificity behind the replication fork.
    Ramachandran S; Ahmad K; Henikoff S
    Bioessays; 2017 Apr; 39(4):. PubMed ID: 28133760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin Replication and Histone Dynamics.
    Alabert C; Jasencakova Z; Groth A
    Adv Exp Med Biol; 2017; 1042():311-333. PubMed ID: 29357065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin dynamics and DNA replication roadblocks.
    Hammond-Martel I; Verreault A; Wurtele H
    DNA Repair (Amst); 2021 Aug; 104():103140. PubMed ID: 34087728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nascent chromatin occupancy profiling reveals locus- and factor-specific chromatin maturation dynamics behind the DNA replication fork.
    Gutiérrez MP; MacAlpine HK; MacAlpine DM
    Genome Res; 2019 Jul; 29(7):1123-1133. PubMed ID: 31217252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional Regulators Compete with Nucleosomes Post-replication.
    Ramachandran S; Henikoff S
    Cell; 2016 Apr; 165(3):580-92. PubMed ID: 27062929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates.
    Abe T; Sugimura K; Hosono Y; Takami Y; Akita M; Yoshimura A; Tada S; Nakayama T; Murofushi H; Okumura K; Takeda S; Horikoshi M; Seki M; Enomoto T
    J Biol Chem; 2011 Sep; 286(35):30504-30512. PubMed ID: 21757688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin dynamics at the replication fork: there's more to life than histones.
    Whitehouse I; Smith DJ
    Curr Opin Genet Dev; 2013 Apr; 23(2):140-6. PubMed ID: 23347596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changing the DNA landscape: putting a SPN on chromatin.
    Formosa T
    Curr Top Microbiol Immunol; 2003; 274():171-201. PubMed ID: 12596908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replication fork stalling elicits chromatin compaction for the stability of stalling replication forks.
    Feng G; Yuan Y; Li Z; Wang L; Zhang B; Luo J; Ji J; Kong D
    Proc Natl Acad Sci U S A; 2019 Jul; 116(29):14563-14572. PubMed ID: 31262821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.
    Kurat CF; Yeeles JTP; Patel H; Early A; Diffley JFX
    Mol Cell; 2017 Jan; 65(1):117-130. PubMed ID: 27989438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin assembly during S phase: contributions from histone deposition, DNA replication and the cell division cycle.
    Krude T; Keller C
    Cell Mol Life Sci; 2001 May; 58(5-6):665-72. PubMed ID: 11437228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic DNA replication in a chromatin context.
    Tabancay AP; Forsburg SL
    Curr Top Dev Biol; 2006; 76():129-84. PubMed ID: 17118266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin and DNA replication.
    MacAlpine DM; Almouzni G
    Cold Spring Harb Perspect Biol; 2013 Aug; 5(8):a010207. PubMed ID: 23751185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replication-Coupled Chromatin Remodeling: An Overview of Disassembly and Assembly of Chromatin during Replication.
    Duc C; Thiriet C
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone acetyltransferase 1 is required for DNA replication fork function and stability.
    Agudelo Garcia PA; Lovejoy CM; Nagarajan P; Park D; Popova LV; Freitas MA; Parthun MR
    J Biol Chem; 2020 Jun; 295(25):8363-8373. PubMed ID: 32366460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New histone supply regulates replication fork speed and PCNA unloading.
    Mejlvang J; Feng Y; Alabert C; Neelsen KJ; Jasencakova Z; Zhao X; Lees M; Sandelin A; Pasero P; Lopes M; Groth A
    J Cell Biol; 2014 Jan; 204(1):29-43. PubMed ID: 24379417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and epigenetic determinants of DNA replication origins, position and activation.
    Méchali M; Yoshida K; Coulombe P; Pasero P
    Curr Opin Genet Dev; 2013 Apr; 23(2):124-31. PubMed ID: 23541525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The asymmetric distribution of RNA polymerase II and nucleosomes on replicated daughter genomes is caused by differences in replication timing between the lagging and the leading strand.
    Ziane R; Camasses A; Radman-Livaja M
    Genome Res; 2022 Feb; 32(2):337-356. PubMed ID: 35042724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of replication fork progression through histone supply and demand.
    Groth A; Corpet A; Cook AJ; Roche D; Bartek J; Lukas J; Almouzni G
    Science; 2007 Dec; 318(5858):1928-31. PubMed ID: 18096807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone variants on the move: substrates for chromatin dynamics.
    Talbert PB; Henikoff S
    Nat Rev Mol Cell Biol; 2017 Feb; 18(2):115-126. PubMed ID: 27924075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.