These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 2813408)

  • 1. Transformation of Tetrahymena thermophila with a mutated circular ribosomal DNA plasmid vector.
    Yu GL; Blackburn EH
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8487-91. PubMed ID: 2813408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular ribosomal DNA plasmids transform Tetrahymena thermophila by homologous recombination with endogenous macronuclear ribosomal DNA.
    Yu GL; Hasson M; Blackburn EH
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5151-5. PubMed ID: 2839832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplification of tandemly repeated origin control sequences confers a replication advantage on rDNA replicons in Tetrahymena thermophila.
    Yu GL; Blackburn EH
    Mol Cell Biol; 1990 May; 10(5):2070-80. PubMed ID: 2325646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular rDNA replicons persist in Tetrahymena thermophila transformants synthesizing GGGGTC telomeric repeats.
    Romero DP; Blackburn EH
    J Eukaryot Microbiol; 1995; 42(1):32-43. PubMed ID: 7537144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two separate regions of the extrachromosomal ribosomal deoxyribonucleic acid of Tetrahymena thermophila enable autonomous replication of plasmids in Saccharomyces cerevisiae.
    Kiss GB; Amin AA; Pearlman RE
    Mol Cell Biol; 1981 Jun; 1(6):535-43. PubMed ID: 6765606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication of an rRNA gene origin plasmid in the Tetrahymena thermophila macronucleus is prevented by transcription through the origin from an RNA polymerase I promoter.
    Pan WJ; Gallagher RC; Blackburn EH
    Mol Cell Biol; 1995 Jun; 15(6):3372-81. PubMed ID: 7760833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem repeats of the 5' non-transcribed spacer of Tetrahymena rDNA function as high copy number autonomous replicons in the macronucleus but do not prevent rRNA gene dosage regulation.
    Pan WJ; Blackburn EH
    Nucleic Acids Res; 1995 May; 23(9):1561-9. PubMed ID: 7784211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory sequences for the amplification and replication of the ribosomal DNA minichromosome in Tetrahymena thermophila.
    Blomberg P; Randolph C; Yao CH; Yao MC
    Mol Cell Biol; 1997 Dec; 17(12):7237-47. PubMed ID: 9372956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A restriction fragment length polymorphism in the 5' non-transcribed spacer of the rDNA of Tetrahymena thermophila inbred strains B and C3.
    Luehrsen KR; Baum MP; Orias E
    Gene; 1987; 55(2-3):169-78. PubMed ID: 2889644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular evidence for somatic recombination in the ribosomal DNA of Tetrahymena thermophila.
    Løvlie A; Haller BL; Orias E
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5156-60. PubMed ID: 2899324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High frequency vector-mediated transformation and gene replacement in Tetrahymena.
    Gaertig J; Gu L; Hai B; Gorovsky MA
    Nucleic Acids Res; 1994 Dec; 22(24):5391-8. PubMed ID: 7816630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient mass transformation of Tetrahymena thermophila by electroporation of conjugants.
    Gaertig J; Gorovsky MA
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9196-200. PubMed ID: 1409625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of Tetrahymena thermophila by microinjection of ribosomal RNA genes.
    Tondravi MM; Yao MC
    Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4369-73. PubMed ID: 3459180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomously replicating sequences from the non transcribed spacers of Tetrahymena thermophila ribosomal DNA.
    Amin AA; Pearlman RE
    Nucleic Acids Res; 1985 Apr; 13(7):2647-59. PubMed ID: 2987861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common sequence elements are important for transcription and replication of the extrachromosomal rRNA-encoding genes of Tetrahymena.
    Miyahara K; Hashimoto N; Higashinakagawa T; Pearlman RE
    Gene; 1993 May; 127(2):209-13. PubMed ID: 8500763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying functional regions of rRNA by insertion mutagenesis and complete gene replacement in Tetrahymena thermophila.
    Sweeney R; Yao MC
    EMBO J; 1989 Mar; 8(3):933-8. PubMed ID: 2542027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long range cooperative interactions regulate the initiation of replication in the Tetrahymena thermophila rDNA minichromosome.
    Reischmann KP; Zhang Z; Kapler GM
    Nucleic Acids Res; 1999 Aug; 27(15):3079-89. PubMed ID: 10454603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast centromere sequences do not confer mitotic stability on circular plasmids containing ARS elements of Tetrahymena thermophila rDNA.
    Amin AA; Pearlman RE
    Curr Genet; 1987; 11(5):353-7. PubMed ID: 2836076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonintegrative transformation in the filamentous fungus Podospora anserina: stabilization of a linear vector by the chromosomal ends of Tetrahymena thermophila.
    Perrot M; Barreau C; Bégueret J
    Mol Cell Biol; 1987 May; 7(5):1725-30. PubMed ID: 3600642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene amplification in Tetrahymena thermophila: formation of extrachromosomal palindromic genes coding for rRNA.
    Yao MC; Zhu SG; Yao CH
    Mol Cell Biol; 1985 Jun; 5(6):1260-7. PubMed ID: 4033651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.