BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 28134135)

  • 1. Detection of lead in bone phantoms and arsenic in soft tissue phantoms using synchrotron radiation and a portable x-ray fluorescence system.
    Groskopf C; Bennett SR; Gherase MR; Fleming DEB
    Physiol Meas; 2017 Feb; 38(2):374-386. PubMed ID: 28134135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microbeam grazing-incidence approach to L-shell x-ray fluorescence measurements of lead concentration in bone and soft tissue phantoms.
    Gherase MR; Al-Hamdani S
    Physiol Meas; 2018 Mar; 39(3):035007. PubMed ID: 29406315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing arsenic and selenium in a single nail clipping using portable X-ray fluorescence.
    Fleming DE; Nader MN; Foran KA; Groskopf C; Reno MC; Ware CS; Tehrani M; Guimarães D; Parsons PJ
    Appl Radiat Isot; 2017 Feb; 120():1-6. PubMed ID: 27889549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of measuring arsenic and selenium in human skin using in vivo x-ray fluorescence (XRF)--a comparison of methods.
    Shehab H; Desouza ED; O'Meara J; Pejović-Milić A; Chettle DR; Fleming DE; McNeill FE
    Physiol Meas; 2016 Jan; 37(1):145-61. PubMed ID: 26683849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo quantification of lead in bone with a portable x-ray fluorescence system--methodology and feasibility.
    Nie LH; Sanchez S; Newton K; Grodzins L; Cleveland RO; Weisskopf MG
    Phys Med Biol; 2011 Feb; 56(3):N39-51. PubMed ID: 21242629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method detection limit for potential in vivo arsenic measurements with a 50 W x-ray tube.
    Studinski RC; McNeill FE; O'Meara JM; Chettle DR
    Phys Med Biol; 2006 Nov; 51(21):N381-7. PubMed ID: 17047256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid, high sensitivity technique for measuring arsenic in skin phantoms using a portable x-ray tube and detector.
    Fleming DE; Gherase MR
    Phys Med Biol; 2007 Oct; 52(19):N459-65. PubMed ID: 17881796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous assessment of arsenic and selenium in human nail phantoms using a portable x-ray tube and a detector.
    Roy CW; Gherase MR; Fleming DE
    Phys Med Biol; 2010 Mar; 55(6):N151-9. PubMed ID: 20182007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance comparison of two Olympus InnovX handheld x-ray analyzers for feasibility of measuring arsenic in skin in vivo - Alpha and Delta models.
    Desouza ED; Gherase MR; Fleming DE; Chettle DR; O'Meara JM; McNeill FE
    Appl Radiat Isot; 2017 May; 123():82-93. PubMed ID: 28260610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Non-invasive determination of bone lead in human body using X-ray fluorescence excited by 109Cd].
    Huang SB; Tian L; Cheng HS; Pei P
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1470-2. PubMed ID: 15762508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-shell x-ray fluorescence measurements of lead in bone: system development.
    Todd AC
    Phys Med Biol; 2002 Feb; 47(3):507-22. PubMed ID: 11848125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvements in the calibration of 109Cd K x-ray fluorescence systems for measuring bone lead in vivo.
    Aro AC; Todd AC; Amarasiriwardena C; Hu H
    Phys Med Biol; 1994 Dec; 39(12):2263-71. PubMed ID: 15551552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The radiation dose from a proposed measurement of arsenic and selenium in human skin.
    Gherase MR; Mader JE; Fleming DE
    Phys Med Biol; 2010 Sep; 55(18):5499-514. PubMed ID: 20798460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray fluorescence measurements of arsenic micro-distribution in human nail clippings using synchrotron radiation.
    Gherase MR; Desouza ED; Farquharson MJ; McNeill FE; Kim CY; Fleming DE
    Physiol Meas; 2013 Sep; 34(9):1163-77. PubMed ID: 24137704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new anthropometric phantom for calibrating in vivo measurements of stable lead in the human leg using x-ray fluorescence.
    Spitz H; Jenkins M; Lodwick J; Bornschein R
    Health Phys; 2000 Feb; 78(2):159-69. PubMed ID: 10647982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel calibration for L-shell x-ray fluorescence measurements of bone lead concentration using the strontium K
    Gherase MR; Serna B; Kroeker S
    Physiol Meas; 2021 May; 42(4):. PubMed ID: 33857933
    [No Abstract]   [Full Text] [Related]  

  • 17. Uncertainty calculations for the measurement of in vivo bone lead by x-ray fluorescence.
    O'Meara JM; Fleming DE
    Phys Med Biol; 2009 Apr; 54(8):2449-61. PubMed ID: 19336842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchrotron radiation micro X-ray fluorescence spectroscopy of thin structures in bone samples: comparison of confocal and color X-ray camera setups.
    Rauwolf M; Turyanskaya A; Roschger A; Prost J; Simon R; Scharf O; Radtke M; Schoonjans T; Guilherme Buzanich A; Klaushofer K; Wobrauschek P; Hofstaetter JG; Roschger P; Streli C
    J Synchrotron Radiat; 2017 Jan; 24(Pt 1):307-311. PubMed ID: 28009572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of a portable X-ray fluorescence device for bone lead measurements of condor bones.
    Specht AJ; Parish CN; Wallens EK; Watson RT; Nie LH; Weisskopf MG
    Sci Total Environ; 2018 Feb; 615():398-403. PubMed ID: 28988075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing detector geometry for trace element mapping by X-ray fluorescence.
    Sun Y; Gleber SC; Jacobsen C; Kirz J; Vogt S
    Ultramicroscopy; 2015 May; 152():44-56. PubMed ID: 25600825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.