These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28134135)

  • 21. Portable x-ray fluorescence for the analysis of chromium in nail and nail clippings.
    Fleming DE; Ware CS
    Appl Radiat Isot; 2017 Mar; 121():91-95. PubMed ID: 28040603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ex vivo evaluation of a coherent normalization procedure to quantify in vivo finger strontium XRS measurements.
    Heirwegh CM; Chettle DR; Pejovicc-Milicc A
    Med Phys; 2012 Feb; 39(2):832-41. PubMed ID: 22320793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurements of Strontium Levels in Human Bone In Vivo Using Portable X-ray Fluorescence (XRF).
    Specht AJ; Mostafaei F; Lin Y; Xu J; Nie LH
    Appl Spectrosc; 2017 Aug; 71(8):1962-1968. PubMed ID: 28756702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A feasibility study to determine the potential of in vivo detection of gadolinium by x-ray fluorescence (XRF) following gadolinium-based contrast-enhanced MRI.
    Mostafaei F; McNeill FE; Chettle DR; Noseworthy MD
    Physiol Meas; 2015 Jan; 36(1):N1-13. PubMed ID: 25501799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous detection of As and Se in polyester resin skin phantoms.
    Gherase MR; Vallee ME; Fleming DE
    Appl Radiat Isot; 2010; 68(4-5):743-5. PubMed ID: 19819714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing zinc from a nail clipping using mono-energetic portable X-ray fluorescence.
    Fleming DEB; Crook SL; Evans CT
    Appl Radiat Isot; 2019 Mar; 145():170-175. PubMed ID: 30639633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bone lead measurement using X-ray fluorescence.
    Wallace JD; Thomas BJ
    Australas Phys Eng Sci Med; 1993 Sep; 16(3):118-24. PubMed ID: 8240139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An investigation of the 109Cd gamma-ray induced K-x-ray fluorescence (XRF) bone-lead measurement calibration procedure.
    Nie H; Chettle DR; McNeill FE; O'Meara JM
    Phys Med Biol; 2004 Oct; 49(19):N325-34. PubMed ID: 15552425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of a method detection limit for an in vivo XRF arsenic detection system.
    Studinski RC; McNeill FE; Chettle DR; O'Meara JM
    Phys Med Biol; 2005 Feb; 50(3):521-30. PubMed ID: 15773727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synchrotron-based scattered radiation from phantom materials used in X-ray CT.
    Rao DV; Swapna M; Cesareo R; Brunetti A; Akatsuka T; Yuasa T; Takeda T; Gigante GE
    J Xray Sci Technol; 2010; 18(3):327-37. PubMed ID: 20714090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved Micro-X-ray Fluorescence Confocal Imaging of Two-Dimensional Distribution of Arsenic Concentration in Cucumber Hypocotyls Using Synchrotron Radiation.
    Szalóki I; Gerényi A; Fodor F; Radócz G; Czech V; Vincze L
    Anal Chem; 2021 Aug; 93(34):11660-11668. PubMed ID: 34403244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First demonstration of multiplexed X-ray fluorescence computed tomography (XFCT) imaging.
    Kuang Y; Pratx G; Bazalova M; Meng B; Qian J; Xing L
    IEEE Trans Med Imaging; 2013 Feb; 32(2):262-7. PubMed ID: 23076031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contamination of in vivo bone-lead measurements.
    Todd AC
    Phys Med Biol; 2000 Jan; 45(1):229-40. PubMed ID: 10661594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone.
    Specht AJ; Weisskopf MG; Nie LH
    Physiol Meas; 2017 Mar; 38(3):575-585. PubMed ID: 28169835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. K x-ray fluorescence measurements of bone lead concentration: the analysis of low-level data.
    Kim R; Aro A; Rotnitzky A; Amarasiriwardena C; Hu H
    Phys Med Biol; 1995 Sep; 40(9):1475-85. PubMed ID: 8532760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A calibration method for proposed XRF measurements of arsenic and selenium in nail clippings.
    Gherase MR; Fleming DE
    Phys Med Biol; 2011 Oct; 56(20):N215-25. PubMed ID: 21937772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Normalisation with coherent scatter signal: improvements in the calibration procedure of the 57Co-based in vivo XRF bone-Pb measurement.
    O'Meara JM; Börjesson J; Chettle DR; Mattsson S
    Appl Radiat Isot; 2001 Feb; 54(2):319-25. PubMed ID: 11200895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvements and reproducibility of an optimal grazing-incidence position method to L-shell x-ray fluorescence measurements of lead in bone and soft tissue phantoms.
    Gherase MR; Al-Hamdani S
    Biomed Phys Eng Express; 2018 Nov; 4(6):. PubMed ID: 30631485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of selected additive manufacturing materials for synchrotron monochromatic imaging and broad-beam radiotherapy at the Australian synchrotron-imaging and medical beamline.
    Bustillo JPO; Paino J; Barnes M; Cameron M; Rosenfeld AB; Lerch MLF
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38718813
    [No Abstract]   [Full Text] [Related]  

  • 40. Treatment plans optimization for contrast-enhanced synchrotron stereotactic radiotherapy.
    Edouard M; Broggio D; Prezado Y; Estève F; Elleaume H; Adam JF
    Med Phys; 2010 Jun; 37(6):2445-56. PubMed ID: 20632555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.