These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 2813423)

  • 21. Expression of transformed morphology and anchorage independent growth of hamster embryo cells.
    Rivedal E; Sanner T
    Carcinogenesis; 1983; 4(7):817-20. PubMed ID: 6307538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth and transformation suppressor genes for BHK Syrian hamster cells on human chromosomes 1 and 11.
    Annab LA; Dong JT; Futreal PA; Satoh H; Oshimura M; Barrett JC
    Mol Carcinog; 1992; 6(4):280-8. PubMed ID: 1485918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlation of in vitro growth properties and tumorigenicity of Syrian hamster cell lines.
    Barrett JC; Crawford BD; Mixter LO; Schechtman LM; Ts'o PO; Pollack R
    Cancer Res; 1979 May; 39(5):1504-10. PubMed ID: 427793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Suppression of tumorigenicity in hybrids of normal and oncogene-transformed CHEF cells.
    Craig RW; Sager R
    Proc Natl Acad Sci U S A; 1985 Apr; 82(7):2062-6. PubMed ID: 3856884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of oncogenes and tumor suppressor genes in a multistep model of carcinogenesis.
    Barrett JC; Oshimura M; Koi M
    Symp Fundam Cancer Res; 1986; 39():45-56. PubMed ID: 3321309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of Gab1 lacking the pleckstrin homology domain is associated with neoplastic progression.
    Kameda H; Risinger JI; Han BB; Baek SJ; Barrett JC; Abe T; Takeuchi T; Glasgow WC; Eling TE
    Mol Cell Biol; 2001 Oct; 21(20):6895-905. PubMed ID: 11564873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential proliferative responses of Syrian hamster embryo fibroblasts to paraquat-generated superoxide radicals depending on tumor suppressor gene function.
    Nicotera TM; Privalle C; Wang TC; Oshimura M; Barrett JC
    Cancer Res; 1994 Jul; 54(14):3884-8. PubMed ID: 8033111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss of a tumor suppressor function during neoplastic progression of epithelial cells in vitro.
    Knowles MA; Eydmann ME
    Int J Cancer; 1991 Mar; 47(5):726-31. PubMed ID: 2004853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of tumor-promoting phorbol diesters on neoplastic progression of Syrian hamster embryo cells.
    O'Brien TG; Saladik D; Diamond L
    Cancer Res; 1982 Apr; 42(4):1233-8. PubMed ID: 7059999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of the transformed phenotype and tumorigenicity in somatic cell hybrids.
    Marshall CJ
    J Cell Sci; 1979 Oct; 39():319-27. PubMed ID: 575140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinoids have different effects on morphological transformation and anchorage independent growth of Syrian hamster embryo cells.
    Rivedal E; Sanner T
    Carcinogenesis; 1985 Jul; 6(7):955-8. PubMed ID: 4017175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neoplastic conversion of preneoplastic Syrian hamster cells: rate estimation by fluctuation analysis.
    Crawford BD; Barrett JC; Ts'o PO
    Mol Cell Biol; 1983 May; 3(5):931-45. PubMed ID: 6865945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequential loss of suppressor genes for three specific functions during in vivo carcinogenesis.
    Moroco JR; Solt DB; Polverini PJ
    Lab Invest; 1990 Sep; 63(3):298-306. PubMed ID: 1697637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Suppression of the transformed phenotype in somatic cell hybrids.
    Marshall CJ; Dave H
    J Cell Sci; 1978 Oct; 33():171-90. PubMed ID: 721902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppression of tumorigenicity in hybrids of tumorigenic Chinese hamster cells and diploid mouse fibroblasts: dependence on the presence of at least three different mouse chromosomes and independence of hamster genome dosage.
    Schäfer R; Hoffmann H; Willecke K
    Cancer Res; 1983 May; 43(5):2240-6. PubMed ID: 6831446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monochromosome transfers to Syrian hamster BHK cells via microcell fusion provide functional evidence for suppressor genes on human chromosome 9 both for anchorage independence and for tumorigenicity.
    Islam MQ; Islam K; Levan G; Horvath G
    Genes Chromosomes Cancer; 1995 Jun; 13(2):115-25. PubMed ID: 7542906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic analysis of tumorigenesis: XXI. Suppressor genes in CHEF cells.
    Smith BL; Sager R
    Somat Cell Mol Genet; 1985 Jan; 11(1):25-34. PubMed ID: 3856329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variation in capacity for anchorage-independent growth among agar-derived clones of spontaneously transformed BALB/3T3 cells.
    Romerdahl CA; Rubin H
    Cancer Res; 1984 Dec; 44(12 Pt 1):5570-6. PubMed ID: 6498818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multistage neoplastic transformation of Syrian hamster embryo cells cultured at pH 6.70.
    LeBoeuf RA; Kerckaert GA; Aardema MJ; Gibson DP
    Cancer Res; 1990 Jun; 50(12):3722-9. PubMed ID: 2340519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of growth responsiveness to epidermal growth factor and enhanced production of alpha-transforming growth factors in ras-transformed mouse mammary epithelial cells.
    Salomon DS; Perroteau I; Kidwell WR; Tam J; Derynck R
    J Cell Physiol; 1987 Mar; 130(3):397-409. PubMed ID: 3494020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.