These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Chemical segregation in metallic glass nanowires. Zhang Q; Li QK; Li M J Chem Phys; 2014 Nov; 141(19):194701. PubMed ID: 25416899 [TBL] [Abstract][Full Text] [Related]
4. Role of surface oxidation on the size dependent mechanical properties of nickel nanowires: a ReaxFF molecular dynamics study. Aral G; Islam MM; van Duin ACT Phys Chem Chem Phys; 2017 Dec; 20(1):284-298. PubMed ID: 29205239 [TBL] [Abstract][Full Text] [Related]
6. Uniaxial tension-induced fracture in gold nanowires with the dependence on size and atomic vacancies. Wang F; Dai Y; Zhao J; Li Q Phys Chem Chem Phys; 2014 Dec; 16(45):24716-26. PubMed ID: 25315454 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics simulation of ZnO nanowires: size effects, defects, and super ductility. Dai L; Cheong WC; Sow CH; Lim CT; Tan VB Langmuir; 2010 Jan; 26(2):1165-71. PubMed ID: 19711920 [TBL] [Abstract][Full Text] [Related]
8. Structural characteristics in deformation mechanism transformation in nanoscale metallic glasses. Zhang Q; Li QK; Zhao SF; Wang WH; Li M J Phys Condens Matter; 2019 Nov; 31(45):455401. PubMed ID: 31342932 [TBL] [Abstract][Full Text] [Related]
9. Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires. Koh SJ; Lee HP Nanotechnology; 2006 Jul; 17(14):3451-67. PubMed ID: 19661590 [TBL] [Abstract][Full Text] [Related]
10. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Lee S; Im J; Yoo Y; Bitzek E; Kiener D; Richter G; Kim B; Oh SH Nat Commun; 2014; 5():3033. PubMed ID: 24398783 [TBL] [Abstract][Full Text] [Related]
11. Temperature-Dependent Superplasticity and Strengthening in CoNiCrFeMn High Entropy Alloy Nanowires Using Atomistic Simulations. Tripathi PK; Chiu YC; Bhowmick S; Lo YC Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443940 [TBL] [Abstract][Full Text] [Related]
12. Near-ideal strength in gold nanowires achieved through microstructural design. Deng C; Sansoz F ACS Nano; 2009 Oct; 3(10):3001-8. PubMed ID: 19743833 [TBL] [Abstract][Full Text] [Related]
13. Gaining sight after being blind: A tribute to Jing Zhu. De Hosson JTM Ultramicroscopy; 2018 Sep; 192():37-49. PubMed ID: 29886161 [TBL] [Abstract][Full Text] [Related]
14. Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires. Seo JH; Park HS; Yoo Y; Seong TY; Li J; Ahn JP; Kim B; Choi IS Nano Lett; 2013 Nov; 13(11):5112-6. PubMed ID: 24073716 [TBL] [Abstract][Full Text] [Related]
15. Anomalous surface states modify the size-dependent mechanical properties and fracture of silica nanowires. Tang C; Dávila LP Nanotechnology; 2014 Oct; 25(43):435702. PubMed ID: 25298024 [TBL] [Abstract][Full Text] [Related]
16. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture. Lei X; Li C; Shi X; Xu X; Wei Y Sci Rep; 2015 May; 5():10537. PubMed ID: 26022892 [TBL] [Abstract][Full Text] [Related]
17. Oxyhydroxide of metallic nanowires in a molecular H Aral G; Islam MM; Wang YJ; Ogata S; Duin ACTV Phys Chem Chem Phys; 2018 Jun; 20(25):17289-17303. PubMed ID: 29901673 [TBL] [Abstract][Full Text] [Related]
18. Effect of Strain Rate on Mechanical Deformation Behavior in CuZr Metallic Glass. Fan B; Li M Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893772 [TBL] [Abstract][Full Text] [Related]
19. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires. Narayanan S; Cheng G; Zeng Z; Zhu Y; Zhu T Nano Lett; 2015 Jun; 15(6):4037-44. PubMed ID: 25965858 [TBL] [Abstract][Full Text] [Related]
20. The effect of loading methods on the microstructural evolution and degree of strain localization in Cu Katakareddi G; Yedla N J Mol Graph Model; 2022 Sep; 115():108216. PubMed ID: 35609441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]