These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 28134309)

  • 1. Collapse of the tropical and subtropical North Atlantic CO
    Ibánhez JS; Flores M; Lefèvre N
    Sci Rep; 2017 Jan; 7():41694. PubMed ID: 28134309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A short-term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean.
    Bates NR; Pequignet AC; Johnson RJ; Gruber N
    Nature; 2002 Dec; 420(6915):489-93. PubMed ID: 12487116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. North Atlantic oscillation controls multidecadal changes in the North Tropical Atlantic-Pacific connection.
    Ding R; Nnamchi HC; Yu JY; Li T; Sun C; Li J; Tseng YH; Li X; Xie F; Feng J; Ji K; Li X
    Nat Commun; 2023 Feb; 14(1):862. PubMed ID: 36792593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño.
    Chang P; Fang Y; Saravanan R; Ji L; Seidel H
    Nature; 2006 Sep; 443(7109):324-8. PubMed ID: 16988709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation.
    Sun C; Kucharski F; Li J; Jin FF; Kang IS; Ding R
    Nat Commun; 2017 Jul; 8():15998. PubMed ID: 28685765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of the Atlantic Multidecadal Oscillation on the Pacific North Equatorial Current bifurcation.
    Wu CR; Lin YF; Qiu B
    Sci Rep; 2019 Feb; 9(1):2162. PubMed ID: 30770851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 2015/2016 El Niño Event in Context of the MERRA-2 Reanalysis: A Comparison of the Tropical Pacific with 1982/1983 and 1997/1998.
    Lim YK; Kovach RM; Pawson S; Vernieres G
    J Clim; 2017; 30():4819-4842. PubMed ID: 29962660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO
    Curbelo-Hernández D; González-Dávila M; González AG; González-Santana D; Santana-Casiano JM
    Sci Total Environ; 2021 Jun; 775():145804. PubMed ID: 33631561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean.
    Dore JE; Lukas R; Sadler DW; Karl DM
    Nature; 2003 Aug; 424(6950):754-7. PubMed ID: 12917678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sea surface temperature variability: patterns and mechanisms.
    Deser C; Alexander MA; Xie SP; Phillips AS
    Ann Rev Mar Sci; 2010; 2():115-43. PubMed ID: 21141660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global air-sea flux of CO2: an estimate based on measurements of sea-air pCO2 difference.
    Takahashi T; Feely RA; Weiss RF; Wanninkhof RH; Chipman DW; Sutherland SC; Takahashi TT
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8292-9. PubMed ID: 11607736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting El Niño Beyond 1-year Lead: Effect of the Western Hemisphere Warm Pool.
    Park JH; Kug JS; Li T; Behera SK
    Sci Rep; 2018 Oct; 8(1):14957. PubMed ID: 30297822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both air-sea components are crucial for El Niño forecast from boreal spring.
    Fang XH; Mu M
    Sci Rep; 2018 Jul; 8(1):10501. PubMed ID: 30002434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural Variability and Anthropogenic Trends in the Ocean Carbon Sink.
    McKinley GA; Fay AR; Lovenduski NS; Pilcher DJ
    Ann Rev Mar Sci; 2017 Jan; 9():125-150. PubMed ID: 27620831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Millennial and orbital variations of El Niño/Southern Oscillation and high-latitude climate in the last glacial period.
    Turney CS; Kershaw AP; Clemens SC; Branch N; Moss PT; Fifield LK
    Nature; 2004 Mar; 428(6980):306-10. PubMed ID: 15029193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long series relationships between global interannual CO2 increment and climate: evidence for stability and change in role of the tropical and boreal-temperate zones.
    Adams JM; Piovesan G
    Chemosphere; 2005 Jun; 59(11):1595-612. PubMed ID: 15878607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced biennial variability in the Pacific due to Atlantic capacitor effect.
    Wang L; Yu JY; Paek H
    Nat Commun; 2017 Mar; 8():14887. PubMed ID: 28317857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonality in the relationship between equatorial-mean heat content and interannual eastern equatorial Atlantic sea surface temperature variability.
    Turner KJ; Burls NJ; von Brandis A; Lübbecke J; Claus M
    Clim Dyn; 2022; 59(1-2):61-75. PubMed ID: 35755453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Regional Climate Mode Discovered in the North Atlantic: Dakar Niño/Niña.
    Oettli P; Morioka Y; Yamagata T
    Sci Rep; 2016 Jan; 6():18782. PubMed ID: 26739121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subtropical Potential Vorticity Intrusion Drives Increasing Tropospheric Ozone over the Tropical Central Pacific.
    Nath D; Chen W; Graf HF; Lan X; Gong H; Nath R; Hu K; Wang L
    Sci Rep; 2016 Feb; 6():21370. PubMed ID: 26868836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.