These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28134347)

  • 1. Determination and controlling of grain structure of metals after laser incidence: Theoretical approach.
    Dezfoli AR; Hwang WS; Huang WC; Tsai TW
    Sci Rep; 2017 Jan; 7():41527. PubMed ID: 28134347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated Finite Element and Cellular Automaton Approach.
    Ansari Dezfoli AR; Lo YL; Raza MM
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Multi-Track and Multi-Layer Epitaxy Grain Growth Simulations of Selective Laser Melting.
    Dezfoli ARA; Lo YL; Raza MM
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Numerical Simulation of Grain Growth during Selective Laser Melting of 316L Stainless Steel.
    Xu F; Xiong F; Li MJ; Lian Y
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scale characterization by FIB-SEM/TEM/3DAP.
    Ohkubo T; Sepehri-Amin H; Sasaki TT; Hono K
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i6-i7. PubMed ID: 25359845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Thermal Stress on the Formation and Cracking Behavior of Nickel-Based Superalloys by Selective Laser Melting Based on a Coupled Thermo-Mechanical Model.
    Nie S; Li L; Wang Q; Zhao R; Lin X; Liu F
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co-Ni films.
    Bastos A; Zaefferer S; Raabe D
    J Microsc; 2008 Jun; 230(Pt 3):487-98. PubMed ID: 18503675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat Source Modeling in Selective Laser Melting.
    Mirkoohi E; Seivers DE; Garmestani H; Liang SY
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31247957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear-assisted grain coarsening in colloidal polycrystals.
    Li W; Peng Y; Zhang Y; Still T; Yodh AG; Han Y
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24055-24060. PubMed ID: 32938800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local Melting Attracts Grain Boundaries in Colloidal Polycrystals.
    Cash CE; Wang J; Martirossyan MM; Ludlow BK; Baptista AE; Brown NM; Weissler EJ; Abacousnac J; Gerbode SJ
    Phys Rev Lett; 2018 Jan; 120(1):018002. PubMed ID: 29350950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of the Evolution of Thermal Dynamics during Selective Laser Melting and Experimental Verification Using Online Monitoring.
    Bian P; Shao X; Du J; Ye F; Zhang X; Mu Y
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on Interfacial Bonding Properties of NiTi/CuSn10 Dissimilar Materials by Selective Laser Melting.
    Song C; Hu Z; Xiao Y; Li Y; Yang Y
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on Selective Laser Melting AlSi10Mg Cellular Lattice Strut: Molten Pool Morphology, Surface Roughness and Dimensional Accuracy.
    Han X; Zhu H; Nie X; Wang G; Zeng X
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29518900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy.
    Zhang H; Xu Q
    Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29077067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of Grain Growth in a Ni-Based Superalloy by Experiments and Cellular Automaton Model.
    Liu YX; Ke ZJ; Li RH; Song JQ; Ruan JJ
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of Abnormal Grain Growth Using the Cellular Automaton Method.
    Murata K; Fukui C; Sun F; Chen TT; Adachi Y
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals.
    Kobler A; Kashiwar A; Hahn H; Kübel C
    Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three dimensional image-based simulation of ultrasonic wave propagation in polycrystalline metal using phase-field modeling.
    Nakahata K; Sugahara H; Barth M; Köhler B; Schubert F
    Ultrasonics; 2016 Apr; 67():18-29. PubMed ID: 26773789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.
    Han X; Wang L; Yue Y; Zhang Z
    Ultramicroscopy; 2015 Apr; 151():94-100. PubMed ID: 25576291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural disjoining potential for grain-boundary premelting and grain coalescence from molecular-dynamics simulations.
    Fensin SJ; Olmsted D; Buta D; Asta M; Karma A; Hoyt JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031601. PubMed ID: 20365741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.