These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 28134390)

  • 1. Effects of surface oxidation of Cu substrates on the growth kinetics of graphene by chemical vapor deposition.
    Chang RJ; Lee CH; Lee MK; Chen CW; Wen CY
    Nanoscale; 2017 Feb; 9(6):2324-2329. PubMed ID: 28134390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical vapor deposition of graphene single crystals.
    Yan Z; Peng Z; Tour JM
    Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition.
    Das S; Drucker J
    Nanotechnology; 2017 Mar; 28(10):105601. PubMed ID: 28084218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realizing controllable graphene nucleation by regulating the competition of hydrogen and oxygen during chemical vapor deposition heating.
    Zhang H; Zhang Y; Zhang Y; Chen Z; Sui Y; Ge X; Deng R; Yu G; Jin Z; Liu X
    Phys Chem Chem Phys; 2016 Aug; 18(34):23638-42. PubMed ID: 27506467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epitaxial nucleation of CVD bilayer graphene on copper.
    Song Y; Zhuang J; Song M; Yin S; Cheng Y; Zhang X; Wang M; Xiang R; Xia Y; Maruyama S; Zhao P; Ding F; Wang H
    Nanoscale; 2016 Dec; 8(48):20001-20007. PubMed ID: 27858033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective growth of graphene in layer-by-layer via chemical vapor deposition.
    Park J; An H; Choi DC; Hussain S; Song W; An KS; Lee WJ; Lee N; Lee WG; Jung J
    Nanoscale; 2016 Aug; 8(30):14633-42. PubMed ID: 27436358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of catalytic copper pretreatments on CVD graphene growth at different stages.
    Li N; Zhang RJ; Zhen Z; Xu ZH; Mu RD; He LM
    Nanotechnology; 2021 Feb; 32(9):095607. PubMed ID: 33217746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of chemical vapor deposition of graphene and related applications.
    Zhang Y; Zhang L; Zhou C
    Acc Chem Res; 2013 Oct; 46(10):2329-39. PubMed ID: 23480816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Vapor Deposited Few-Layer Graphene as an Electron Field Emitter.
    Behural SK; Nayak S; Yang Q; Hirose A; Janil O
    J Nanosci Nanotechnol; 2016 Jan; 16(1):287-95. PubMed ID: 27398456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Substrates on Nucleation, Growth and Electrical Property of Vertical Few-Layer Graphene.
    Hong T; Guo C; Zhang Y; Zhan R; Zhao P; Li B; Deng S
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable Growth of the Graphene from Millimeter-Sized Monolayer to Multilayer on Cu by Chemical Vapor Deposition.
    Liu J; Huang Z; Lai F; Lin L; Xu Y; Zuo C; Zheng W; Qu Y
    Nanoscale Res Lett; 2015 Dec; 10(1):455. PubMed ID: 26612469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport.
    Ni GX; Zheng Y; Bae S; Kim HR; Pachoud A; Kim YS; Tan CL; Im D; Ahn JH; Hong BH; Ozyilmaz B
    ACS Nano; 2012 Feb; 6(2):1158-64. PubMed ID: 22251076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO
    Pang J; Mendes RG; Wrobel PS; Wlodarski MD; Ta HQ; Zhao L; Giebeler L; Trzebicka B; Gemming T; Fu L; Liu Z; Eckert J; Bachmatiuk A; Rümmeli MH
    ACS Nano; 2017 Feb; 11(2):1946-1956. PubMed ID: 28117971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative island growth of large-area single-crystal graphene on copper using chemical vapor deposition.
    Eres G; Regmi M; Rouleau CM; Chen J; Ivanov IN; Puretzky AA; Geohegan DB
    ACS Nano; 2014 Jun; 8(6):5657-69. PubMed ID: 24833238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition.
    Wu Q; Jung SJ; Jang SK; Lee J; Jeon I; Suh H; Kim YH; Lee YH; Lee S; Song YJ
    Nanoscale; 2015 Jun; 7(23):10357-61. PubMed ID: 26006180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure.
    Losurdo M; Giangregorio MM; Capezzuto P; Bruno G
    Phys Chem Chem Phys; 2011 Dec; 13(46):20836-43. PubMed ID: 22006173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene Nucleation Preference at CuO Defects Rather Than Cu
    Sun X; Su Z; Zhang J; Liu X; Li Y; Yu F; Cheng X; Zhao X
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43156-43165. PubMed ID: 30396269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.