BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28134514)

  • 1. Zeolite-Templated Carbon as an Ordered Microporous Electrode for Aluminum Batteries.
    Stadie NP; Wang S; Kravchyk KV; Kovalenko MV
    ACS Nano; 2017 Feb; 11(2):1911-1919. PubMed ID: 28134514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zeolite-Templated Carbon as the Cathode for a High Energy Density Dual-Ion Battery.
    Dubey RJ; Nüssli J; Piveteau L; Kravchyk KV; Rossell MD; Campanini M; Erni R; Kovalenko MV; Stadie NP
    ACS Appl Mater Interfaces; 2019 May; 11(19):17686-17696. PubMed ID: 31002234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zeolite-Templated Carbon as a Stable, High Power Magnesium-Ion Cathode Material.
    Dubey RJ; Colijn T; Aebli M; Hanson EE; Widmer R; Kravchyk KV; Kovalenko MV; Stadie NP
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39902-39909. PubMed ID: 31580637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode.
    Wang S; Jiao S; Wang J; Chen HS; Tian D; Lei H; Fang DN
    ACS Nano; 2017 Jan; 11(1):469-477. PubMed ID: 27977919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific carbon deposition for hierarchically ordered core/shell-structured graphitic carbon with remarkable electrochemical performance.
    Lv Y; Wu Z; Qian X; Fang Y; Feng D; Xia Y; Tu B; Zhao D
    ChemSusChem; 2013 Oct; 6(10):1938-44. PubMed ID: 24039038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methodological Studies of the Mechanism of Anion Insertion in Nanometer-Sized Carbon Micropores.
    Welty C; Taylor EE; Posey S; Vailati P; Kravchyk KV; Kovalenko MV; Stadie NP
    ChemSusChem; 2023 Feb; 16(4):e202201847. PubMed ID: 36350785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kish Graphite Flakes as a Cathode Material for an Aluminum Chloride-Graphite Battery.
    Wang S; Kravchyk KV; Krumeich F; Kovalenko MV
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28478-28485. PubMed ID: 28766336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amorphous Carbon-Derived Nanosheet-Bricked Porous Graphite as High-Performance Cathode for Aluminum-Ion Batteries.
    Zhang C; He R; Zhang J; Hu Y; Wang Z; Jin X
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26510-26516. PubMed ID: 30024719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Graphite-Graphite Dual Ion Battery Using an AlCl
    Li Z; Liu J; Niu B; Li J; Kang F
    Small; 2018 Jul; 14(28):e1800745. PubMed ID: 29882341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life.
    Kim J; Raj MR; Lee G
    Nanomicro Lett; 2021 Aug; 13(1):171. PubMed ID: 34370082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Potential of Hierarchical Zeolite-Templated Carbon Materials for High-Performance Li-O
    Hayat K; Bahamon D; Vega LF; AlHajaj A
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54432-54445. PubMed ID: 37968934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.
    Sun F; Gao J; Zhu Y; Pi X; Wang L; Liu X; Qin Y
    Sci Rep; 2017 Feb; 7():40990. PubMed ID: 28155853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ordered Macro-Microporous Metal-Organic Framework Single Crystals and Their Derivatives for Rechargeable Aluminum-Ion Batteries.
    Hong H; Liu J; Huang H; Atangana Etogo C; Yang X; Guan B; Zhang L
    J Am Chem Soc; 2019 Sep; 141(37):14764-14771. PubMed ID: 31469547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intensification of Pseudocapacitance by Nanopore Engineering on Waste-Bamboo-Derived Carbon as a Positive Electrode for Lithium-Ion Batteries.
    Hyun JC; Kwak JH; Lee ME; Choi J; Kim J; Kim SS; Yun YS
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31454972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.
    Angell M; Pan CJ; Rong Y; Yuan C; Lin MC; Hwang BJ; Dai H
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):834-839. PubMed ID: 28096353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Potassium Storage Performance for K-Te Batteries
    Zhang Y; Liu C; Wu Z; Manaig D; Freschi DJ; Wang Z; Liu J
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16345-16354. PubMed ID: 33787196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Multiple Ion Reactions Based on a CoSe
    Yuan Z; Lin Q; Li Y; Han W; Wang L
    Adv Mater; 2023 Apr; 35(17):e2211527. PubMed ID: 36727407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors.
    Wang S; Wang R; Zhang Y; Zhang L
    Nanotechnology; 2017 Nov; 28(44):445406. PubMed ID: 28783039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.