BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28134514)

  • 21. Graphene: A Cathode Material of Choice for Aluminum-Ion Batteries.
    Das SK
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16606-16617. PubMed ID: 29566301
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Computational Study of a Single-Walled Carbon-Nanotube-Based Ultrafast High-Capacity Aluminum Battery.
    Bhauriyal P; Mahata A; Pathak B
    Chem Asian J; 2017 Aug; 12(15):1944-1951. PubMed ID: 28493516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal-Organic Framework for Aluminum based Energy Storage Devices: Utilizing Redox Additives for Significant Performance Enhancement.
    De P; Priya S; Halder J; Srivastava AK; Chandra A
    ACS Appl Mater Interfaces; 2024 May; 16(20):26299-26315. PubMed ID: 38733338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Heteroatoms in Ordered Microporous Carbons on Their Electrochemical Capacitance.
    Itoi H; Nishihara H; Kyotani T
    Langmuir; 2016 Nov; 32(46):11997-12004. PubMed ID: 27792878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polypyrenes as High-Performance Cathode Materials for Aluminum Batteries.
    Walter M; Kravchyk KV; Böfer C; Widmer R; Kovalenko MV
    Adv Mater; 2018 Apr; 30(15):e1705644. PubMed ID: 29512211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrogen-Doped Porous Carbon Nanosheets from Eco-Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries.
    Mondal AK; Kretschmer K; Zhao Y; Liu H; Wang C; Sun B; Wang G
    Chemistry; 2017 Mar; 23(15):3683-3690. PubMed ID: 28039908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rechargeable Aluminum-Ion Battery Based on MoS
    Li Z; Niu B; Liu J; Li J; Kang F
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9451-9459. PubMed ID: 29469560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protective Oxide Coating for Ionic Conductive Solid Electrolyte Interphase.
    Kim YS; Kim SH; Kim G; Heo S; Mun J; Han S; Jung H; Kyoung YK; Yun DJ; Baek WJ; Doo S
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30980-30984. PubMed ID: 27787978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors.
    Hou J; Cao C; Idrees F; Ma X
    ACS Nano; 2015 Mar; 9(3):2556-64. PubMed ID: 25703427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An operando X-ray diffraction study of chloroaluminate anion-graphite intercalation in aluminum batteries.
    Pan CJ; Yuan C; Zhu G; Zhang Q; Huang CJ; Lin MC; Angell M; Hwang BJ; Kaghazchi P; Dai H
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5670-5675. PubMed ID: 29760096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Free-Standing 3D-Sponged Nanofiber Electrodes for Ultrahigh-Rate Energy-Storage Devices.
    Agostini M; Lim DH; Brutti S; Lindahl N; Ahn JH; Scrosati B; Matic A
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34140-34146. PubMed ID: 30152688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Existence of Solid Electrolyte Interphase in Mg Batteries: Mg/S Chemistry as an Example.
    Gao T; Hou S; Huynh K; Wang F; Eidson N; Fan X; Han F; Luo C; Mao M; Li X; Wang C
    ACS Appl Mater Interfaces; 2018 May; 10(17):14767-14776. PubMed ID: 29620854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte.
    Gao T; Li X; Wang X; Hu J; Han F; Fan X; Suo L; Pearse AJ; Lee SB; Rubloff GW; Gaskell KJ; Noked M; Wang C
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9898-901. PubMed ID: 27417442
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mesoporous Reduced Graphene Oxide as a High Capacity Cathode for Aluminum Batteries.
    Smajic J; Alazmi A; Batra N; Palanisamy T; Anjum DH; Costa PMFJ
    Small; 2018 Dec; 14(51):e1803584. PubMed ID: 30358077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon-Coated Porous Aluminum Foil Anode for High-Rate, Long-Term Cycling Stability, and High Energy Density Dual-Ion Batteries.
    Tong X; Zhang F; Ji B; Sheng M; Tang Y
    Adv Mater; 2016 Dec; 28(45):9979-9985. PubMed ID: 27678136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors.
    Hou J; Jiang K; Wei R; Tahir M; Wu X; Shen M; Wang X; Cao C
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30626-30634. PubMed ID: 28819968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Efficiency Cathode Sodium Compensation for Sodium-Ion Batteries.
    Niu YB; Guo YJ; Yin YX; Zhang SY; Wang T; Wang P; Xin S; Guo YG
    Adv Mater; 2020 Aug; 32(33):e2001419. PubMed ID: 32627877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.