These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28134514)

  • 41. The Reverse of Electrostatic Interaction Force for Ultrahigh-Energy Al-Ion batteries.
    Guan W; Wang W; Huang Z; Tu J; Lei H; Wang M; Jiao S
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202317203. PubMed ID: 38286752
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Carbon Derived from Pine Needles as a Na
    Wang X; Zheng C; Qi L; Wang H
    Glob Chall; 2017 Oct; 1(7):1700055. PubMed ID: 31565289
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-Energy-Density Aqueous Magnesium-Ion Battery Based on a Carbon-Coated FeVO
    Zhang H; Ye K; Zhu K; Cang R; Yan J; Cheng K; Wang G; Cao D
    Chemistry; 2017 Dec; 23(67):17118-17126. PubMed ID: 28940443
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A New CuO-Fe
    Di Lecce D; Verrelli R; Campanella D; Marangon V; Hassoun J
    ChemSusChem; 2017 Apr; 10(7):1607-1615. PubMed ID: 28074612
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Defect Sites-Rich Porous Carbon with Pseudocapacitive Behaviors as an Ultrafast and Long-Term Cycling Anode for Sodium-Ion Batteries.
    Wang N; Wang Y; Xu X; Liao T; Du Y; Bai Z; Dou S
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9353-9361. PubMed ID: 29473726
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemically Controlled Solid Electrolyte Interphase Layers Enable Superior Li-S Batteries.
    Wang Y; Lin CF; Rao J; Gaskell K; Rubloff G; Lee SB
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24554-24563. PubMed ID: 29956907
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hypostatic instability of aluminum anode in acidic ionic liquid for aluminum-ion battery.
    Lee D; Lee G; Tak Y
    Nanotechnology; 2018 Sep; 29(36):36LT01. PubMed ID: 29916812
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Boosted Supercapacitive Energy with High Rate Capability of aCarbon Framework with Hierarchical Pore Structure in an Ionic Liquid.
    Wang X; Zhou H; Lou F; Li Y; Buan ME; Duan X; Walmsley JC; Sheridan E; Chen D
    ChemSusChem; 2016 Nov; 9(21):3093-3101. PubMed ID: 27754604
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium-Sulfur Batteries.
    Chung SH; Chang CH; Manthiram A
    ACS Nano; 2016 Nov; 10(11):10462-10470. PubMed ID: 27783490
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity.
    Liu Y; Zhou G; Liu K; Cui Y
    Acc Chem Res; 2017 Dec; 50(12):2895-2905. PubMed ID: 29206446
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient Encapsulation of Small S
    Hong XJ; Tang XY; Wei Q; Song CL; Wang SY; Dong RF; Cai YP; Si LP
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9435-9443. PubMed ID: 29528216
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrahigh Energy Density and Long-Life Cyclic Stability of Surface-Treated Aluminum-Ion Supercapacitors.
    Seon E; Jang S; Raj MR; Tak Y; Lee G
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):45059-45072. PubMed ID: 36165465
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Introducing Artificial Solid Electrolyte Interphase onto the Anode of Aqueous Lithium Energy Storage Systems.
    Ahmed M; Yazdi AZ; Mitha A; Chen P
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30348-30356. PubMed ID: 30091585
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance.
    Xiao Y; Cao M; Ren L; Hu C
    Nanoscale; 2012 Dec; 4(23):7469-74. PubMed ID: 23093095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Revisiting Solid Electrolyte Interphase on the Carbonaceous Electrodes Using Soft X-ray Absorption Spectroscopy.
    Kim Y; Kim DS; Um JH; Yoon J; Kim JM; Kim H; Yoon WS
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29992-29999. PubMed ID: 30088911
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A New Anode for Lithium-Ion Batteries Based on Single-Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design.
    Ren J; Ren RP; Lv YK
    Chem Asian J; 2018 May; 13(9):1223-1227. PubMed ID: 29524325
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Zeolite-templated carbons - three-dimensional microporous graphene frameworks.
    Nishihara H; Kyotani T
    Chem Commun (Camb); 2018 May; 54(45):5648-5673. PubMed ID: 29691533
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes.
    Zhong H; Xu F; Li Z; Fu R; Wu D
    Nanoscale; 2013 Jun; 5(11):4678-82. PubMed ID: 23632802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.