These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28134532)

  • 1. Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions.
    West AC; Schmidt MW; Gordon MS; Ruedenberg K
    J Phys Chem A; 2017 Feb; 121(5):1086-1105. PubMed ID: 28134532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atoms and interatomic bonding synergism inherent in molecular electronic wave functions.
    Ruedenberg K
    J Chem Phys; 2022 Jul; 157(2):024111. PubMed ID: 35840378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comprehensive Analysis in Terms of Molecule-Intrinsic, Quasi-Atomic Orbitals. II. Strongly Correlated MCSCF Wave Functions.
    West AC; Schmidt MW; Gordon MS; Ruedenberg K
    J Phys Chem A; 2015 Oct; 119(41):10360-7. PubMed ID: 26376320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive analysis of molecule-intrinsic quasi-atomic, bonding, and correlating orbitals. I. Hartree-Fock wave functions.
    West AC; Schmidt MW; Gordon MS; Ruedenberg K
    J Chem Phys; 2013 Dec; 139(23):234107. PubMed ID: 24359352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals.
    Lu WC; Wang CZ; Schmidt MW; Bytautas L; Ho KM; Ruedenberg K
    J Chem Phys; 2004 Feb; 120(6):2629-37. PubMed ID: 15268406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Characterization of Molecular Bonding Structures by ab initio Quasi-Atomic Orbital Analyses.
    West AC; Duchimaza-Heredia JJ; Gordon MS; Ruedenberg K
    J Phys Chem A; 2017 Nov; 121(46):8884-8898. PubMed ID: 29135255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orbital overlap and chemical bonding.
    Krapp A; Bickelhaupt FM; Frenking G
    Chemistry; 2006 Dec; 12(36):9196-216. PubMed ID: 17024702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why is Si
    Guidez EB; Gordon MS; Ruedenberg K
    J Am Chem Soc; 2020 Aug; 142(32):13729-13742. PubMed ID: 32662651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds.
    Kovács A; Esterhuysen C; Frenking G
    Chemistry; 2005 Mar; 11(6):1813-25. PubMed ID: 15672434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orbital based electronic structural signatures of the guanine keto G-7H/G-9H tautomer pair as studied using dual space analysis.
    Jones DB; Wang F; Winkler DA; Brunger MJ
    Biophys Chem; 2006 May; 121(2):105-20. PubMed ID: 16464529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient generalized polyelectron population analysis in orbital spaces: the hole-expansion methodology.
    Karafiloglou P
    J Chem Phys; 2009 Apr; 130(16):164103. PubMed ID: 19405557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comprehensive Analysis in Terms of Molecule-Intrinsic Quasi-Atomic Orbitals. IV. Bond Breaking and Bond Forming along the Dissociative Reaction Path of Dioxetane.
    West AC; Schmidt MW; Gordon MS; Ruedenberg K
    J Phys Chem A; 2015 Oct; 119(41):10376-89. PubMed ID: 26371996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electronic environment and contact direction sensitive scoring function for predicting affinities of protein-ligand complexes in Contour(®).
    Lindblom PR; Wu G; Liu Z; Jim KC; Baldwin JJ; Gregg RE; Claremon DA; Singh SB
    J Mol Graph Model; 2014 Sep; 53():118-127. PubMed ID: 25123650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SparseMaps--A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory.
    Guo Y; Sivalingam K; Valeev EF; Neese F
    J Chem Phys; 2016 Mar; 144(9):094111. PubMed ID: 26957161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core molecular orbital contribution to N2O isomerization as studied using theoretical electron momentum spectroscopy.
    Wang F; Larkins FP; Brunger MJ; Michalewicz MT; Winkler DA
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Jan; 57(1):9-15. PubMed ID: 11209870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why does electron sharing lead to covalent bonding? A variational analysis.
    Ruedenberg K; Schmidt MW
    J Comput Chem; 2007 Jan; 28(1):391-410. PubMed ID: 17143869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atom and Bond Fukui Functions and Matrices: A Hirshfeld-I Atoms-in-Molecule Approach.
    Oña OB; De Clercq O; Alcoba DR; Torre A; Lain L; Van Neck D; Bultinck P
    Chemphyschem; 2016 Sep; 17(18):2881-9. PubMed ID: 27381271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seniority number in spin-adapted spaces and compactness of configuration interaction wave functions.
    Alcoba DR; Torre A; Lain L; Massaccesi GE; Oña OB
    J Chem Phys; 2013 Aug; 139(8):084103. PubMed ID: 24006970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computing many-body wave functions with guaranteed precision: the first-order Møller-Plesset wave function for the ground state of helium atom.
    Bischoff FA; Harrison RJ; Valeev EF
    J Chem Phys; 2012 Sep; 137(10):104103. PubMed ID: 22979846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Configuration Interaction Picture for a Molecular Environment Using Localized Molecular Orbitals: The Excited States of Retinal Proteins.
    Hasegawa JY; Fujimoto KJ; Kawatsu T
    J Chem Theory Comput; 2012 Nov; 8(11):4452-61. PubMed ID: 26605605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.