These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28134779)

  • 41. Assessment of the Contribution of BeiDou GEO, IGSO, and MEO Satellites to PPP in Asia-Pacific Region.
    Zhao Q; Wang C; Guo J; Liu X
    Sensors (Basel); 2015 Dec; 15(12):29970-83. PubMed ID: 26633406
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Applications of neural network methods to the processing of earth observation satellite data.
    Loyola DG
    Neural Netw; 2006 Mar; 19(2):168-77. PubMed ID: 16530385
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Research on the trajectory model for ZY-3.
    Chen Y; Xie Z
    ScientificWorldJournal; 2014; 2014():429041. PubMed ID: 25250378
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mapping turbidity in the Charles River, Boston using a high-resolution satellite.
    Hellweger FL; Miller W; Oshodi KS
    Environ Monit Assess; 2007 Sep; 132(1-3):311-20. PubMed ID: 17171243
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing the population coverage of a health demographic surveillance system using satellite imagery and crowd-sourcing.
    Di Pasquale A; McCann RS; Maire N
    PLoS One; 2017; 12(8):e0183661. PubMed ID: 28859109
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Geometric Calibration and Validation of Kompsat-3A AEISS-A Camera.
    Seo D; Oh J; Lee C; Lee D; Choi H
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27783054
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Orbit Determination of Korean GEO Satellite Using Single SLR Sensor.
    Oh H; Park E; Lim HC; Park C
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30158444
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Non-Cooperative Satellite Feature Point Selection Method for Vision-Based Navigation System.
    Ning M; Zhang S; Wang S
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29538294
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.
    Li X; Zhang X; Ren X; Fritsche M; Wickert J; Schuh H
    Sci Rep; 2015 Feb; 5():8328. PubMed ID: 25659949
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A review of spatial technologies with applications for malaria transmission modelling and control in Africa.
    Gebreslasie MT
    Geospat Health; 2015 Nov; 10(2):328. PubMed ID: 26618308
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatial and temporal changes in household structure locations using high-resolution satellite imagery for population assessment: an analysis in southern Zambia, 2006-2011.
    Shields T; Pinchoff J; Lubinda J; Hamapumbu H; Searle K; Kobayashi T; Thuma PE; Moss WJ; Curriero FC
    Geospat Health; 2016 May; 11(2):410. PubMed ID: 27245798
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bundle block adjustment of airborne three-line array imagery based on rotation angles.
    Zhang Y; Zheng M; Huang X; Xiong J
    Sensors (Basel); 2014 May; 14(5):8189-202. PubMed ID: 24811075
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Geometric Correction for the Geostationary Ocean Color Imager from a Combination of Shoreline Matching and Frequency Matching.
    Kim HG; Son JH; Kim T
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30360521
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Review of change detection methods using multi-temporal remotely sensed images].
    Yin SJ; Wu CQ; Wang Q; Ma WD; Zhu L; Yao YJ; Wang XL; Wu D
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Dec; 33(12):3339-42. PubMed ID: 24611399
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ground mapping resolution accuracy of a scanning radiometer from a geostationary satellite.
    Stremler FG; Khalil MA; Parent RJ
    Appl Opt; 1977 Jun; 16(6):1619-27. PubMed ID: 20168763
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Study on the feasibility of delineating mosquitogenic conditions in and around Delhi using Indian Remote Sensing Satellite data.
    Sharma VP; Dhiman RC; Ansari MA; Nagpal BN; Srivastava A; Manavalan P; Adiga S; Radhakrishnan K; Chandrasekhar MG
    Indian J Malariol; 1996 Sep; 33(3):107-25. PubMed ID: 9014394
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Alternative Approach for Registration of High-Resolution Satellite Optical Imagery and ICESat Laser Altimetry Data.
    Liu S; Lv Y; Tong X; Xie H; Liu J; Chen L
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27898048
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Potential for satellite remote sensing of ground water.
    Becker MW
    Ground Water; 2006; 44(2):306-18. PubMed ID: 16556213
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Systematic errors in temperature estimates from MODIS data covering the western Palearctic and their impact on a parasite development model.
    Alonso-Carné J; García-Martín A; Estrada-Peña A
    Geospat Health; 2013 Nov; 8(1):1-12. PubMed ID: 24258878
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of the Quality of SLR Station Coordinates Determined from Laser Ranging to the LARES Satellite.
    Schillak S; Lejba P; Michałek P
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.