BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

837 related articles for article (PubMed ID: 28134919)

  • 1. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching.
    Sacharz J; Giovagnetti V; Ungerer P; Mastroianni G; Ruban AV
    Nat Plants; 2017 Jan; 3():16225. PubMed ID: 28134919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.
    Johnson MP; Ruban AV
    Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes.
    Pawlak K; Paul S; Liu C; Reus M; Yang C; Holzwarth AR
    Photosynth Res; 2020 May; 144(2):195-208. PubMed ID: 32266611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acclimation- and mutation-induced enhancement of PsbS levels affects the kinetics of non-photochemical quenching in Arabidopsis thaliana.
    Zia A; Johnson MP; Ruban AV
    Planta; 2011 Jun; 233(6):1253-64. PubMed ID: 21340700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PsbS interactions involved in the activation of energy dissipation in Arabidopsis.
    Correa-Galvis V; Poschmann G; Melzer M; Stühler K; Jahns P
    Nat Plants; 2016 Feb; 2():15225. PubMed ID: 27249196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a nonphotochemical quenching-deficient Arabidopsis mutant possessing an intact PsbS protein, xanthophyll cycle and lumen acidification.
    Kalituho L; Grasses T; Graf M; Rech J; Jahns P
    Planta; 2006 Feb; 223(3):532-41. PubMed ID: 16136330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes.
    Townsend AJ; Saccon F; Giovagnetti V; Wilson S; Ungerer P; Ruban AV
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):666-675. PubMed ID: 29548769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced DeltapH.
    Johnson MP; Ruban AV
    J Biol Chem; 2011 Jun; 286(22):19973-81. PubMed ID: 21474447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching.
    Shukla MK; Watanabe A; Wilson S; Giovagnetti V; Moustafa EI; Minagawa J; Ruban AV
    J Biol Chem; 2020 Dec; 295(51):17816-17826. PubMed ID: 33454016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid regulation of photosynthetic light harvesting in the absence of minor antenna and reaction centre complexes.
    Saccon F; Giovagnetti V; Shukla MK; Ruban AV
    J Exp Bot; 2020 Jun; 71(12):3626-3637. PubMed ID: 32149343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in thylakoid membrane thickness associated with the reorganization of photosystem II light harvesting complexes during photoprotective energy dissipation.
    Johnson MP; Brain AP; Ruban AV
    Plant Signal Behav; 2011 Sep; 6(9):1386-90. PubMed ID: 21847016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems.
    Ware MA; Giovagnetti V; Belgio E; Ruban AV
    J Photochem Photobiol B; 2015 Nov; 152(Pt B):301-7. PubMed ID: 26233261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes.
    Kiss AZ; Ruban AV; Horton P
    J Biol Chem; 2008 Feb; 283(7):3972-8. PubMed ID: 18055452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The PsbS protein plays important roles in photosystem II supercomplex remodeling under elevated light conditions.
    Dong L; Tu W; Liu K; Sun R; Liu C; Wang K; Yang C
    J Plant Physiol; 2015 Jan; 172():33-41. PubMed ID: 25047739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence of the PsbS and LhcSR products in the green alga Ulva linza and their correlation with excitation pressure.
    Zhang X; Ye N; Mou S; Xu D; Fan X
    Plant Physiol Biochem; 2013 Sep; 70():336-41. PubMed ID: 23811776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots.
    Sylak-Glassman EJ; Malnoë A; De Re E; Brooks MD; Fischer AL; Niyogi KK; Fleming GR
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17498-503. PubMed ID: 25422428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of absorption changes associated with photoprotective energy dissipation in the absence of zeaxanthin.
    Ilioaia C; Johnson MP; Duffy CD; Pascal AA; van Grondelle R; Robert B; Ruban AV
    J Biol Chem; 2011 Jan; 286(1):91-8. PubMed ID: 21036900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana.
    Dikaios I; Schiphorst C; Dall'Osto L; Alboresi A; Bassi R; Pinnola A
    Photosynth Res; 2019 Dec; 142(3):249-264. PubMed ID: 31270669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the energy transfer pathways within photosystem II antenna induced by xanthophyll cycle activity.
    Ilioaia C; Duffy CD; Johnson MP; Ruban AV
    J Phys Chem B; 2013 May; 117(19):5841-7. PubMed ID: 23597158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis.
    Goral TK; Johnson MP; Duffy CD; Brain AP; Ruban AV; Mullineaux CW
    Plant J; 2012 Jan; 69(2):289-301. PubMed ID: 21919982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.