These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 28135266)

  • 1. Memory replay in balanced recurrent networks.
    Chenkov N; Sprekeler H; Kempter R
    PLoS Comput Biol; 2017 Jan; 13(1):e1005359. PubMed ID: 28135266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strengthened Temporal Coordination within Pre-existing Sequential Cell Assemblies Supports Trajectory Replay.
    Farooq U; Sibille J; Liu K; Dragoi G
    Neuron; 2019 Aug; 103(4):719-733.e7. PubMed ID: 31253469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromodulatory control of interacting medial temporal lobe and neocortex in memory consolidation and working memory.
    Cartling B
    Behav Brain Res; 2001 Nov; 126(1-2):65-80. PubMed ID: 11704253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A balanced memory network.
    Roudi Y; Latham PE
    PLoS Comput Biol; 2007 Sep; 3(9):1679-700. PubMed ID: 17845070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Developmental Switch for Hebbian Plasticity.
    Martens MB; Celikel T; Tiesinga PH
    PLoS Comput Biol; 2015 Jul; 11(7):e1004386. PubMed ID: 26172394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparseness constrains the prolongation of memory lifetime via synaptic metaplasticity.
    Leibold C; Kempter R
    Cereb Cortex; 2008 Jan; 18(1):67-77. PubMed ID: 17490993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Use of Hebbian Cell Assemblies for Nonlinear Computation.
    Tetzlaff C; Dasgupta S; Kulvicius T; Wörgötter F
    Sci Rep; 2015 Aug; 5():12866. PubMed ID: 26249242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Memory consolidation and improvement by synaptic tagging and capture in recurrent neural networks.
    Luboeinski J; Tetzlaff C
    Commun Biol; 2021 Mar; 4(1):275. PubMed ID: 33658641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks.
    Vogels TP; Sprekeler H; Zenke F; Clopath C; Gerstner W
    Science; 2011 Dec; 334(6062):1569-73. PubMed ID: 22075724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concurrence of form and function in developing networks and its role in synaptic pruning.
    Millán AP; Torres JJ; Johnson S; Marro J
    Nat Commun; 2018 Jun; 9(1):2236. PubMed ID: 29884799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity.
    Sadeh S; Clopath C; Rotter S
    PLoS Comput Biol; 2015 Jun; 11(6):e1004307. PubMed ID: 26090844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition.
    Bill J; Buesing L; Habenschuss S; Nessler B; Maass W; Legenstein R
    PLoS One; 2015; 10(8):e0134356. PubMed ID: 26284370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organized criticality and scale-free properties in emergent functional neural networks.
    Shin CW; Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):045101. PubMed ID: 17155118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recurrent connections form a phase-locking neuronal tuner for frequency-dependent selective communication.
    Shin D; Cho KH
    Sci Rep; 2013; 3():2519. PubMed ID: 23981983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hub-activated signal transmission in complex networks.
    Jahnke S; Memmesheimer RM; Timme M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):030701. PubMed ID: 24730779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of a randomly grown 2-d network.
    Ajazi F; Napolitano GM; Turova T; Zaurbek I
    Biosystems; 2015 Oct; 136():105-12. PubMed ID: 26375356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrent network model for learning goal-directed sequences through reverse replay.
    Haga T; Fukai T
    Elife; 2018 Jul; 7():. PubMed ID: 29969098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory Plasticity: Balance, Control, and Codependence.
    Hennequin G; Agnes EJ; Vogels TP
    Annu Rev Neurosci; 2017 Jul; 40():557-579. PubMed ID: 28598717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of synaptic plasticity on the structure and dynamics of disordered networks of coupled neurons.
    Bayati M; Valizadeh A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011925. PubMed ID: 23005470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.