These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 28135361)
1. Integrated Comparison of GWAS, Transcriptome, and Proteomics Studies Highlights Similarities in the Biological Basis of Animal and Human Myopia. Riddell N; Crewther SG Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):660-669. PubMed ID: 28135361 [TBL] [Abstract][Full Text] [Related]
2. The retina/RPE proteome in chick myopia and hyperopia models: Commonalities with inherited and age-related ocular pathologies. Riddell N; Faou P; Murphy M; Giummarra L; Downs RA; Rajapaksha H; Crewther SG Mol Vis; 2017; 23():872-888. PubMed ID: 29259393 [TBL] [Abstract][Full Text] [Related]
3. Novel evidence for complement system activation in chick myopia and hyperopia models: a meta-analysis of transcriptome datasets. Riddell N; Crewther SG Sci Rep; 2017 Aug; 7(1):9719. PubMed ID: 28852117 [TBL] [Abstract][Full Text] [Related]
4. Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia. Flitcroft DI; Loughman J; Wildsoet CF; Williams C; Guggenheim JA; Invest Ophthalmol Vis Sci; 2018 Jan; 59(1):338-348. PubMed ID: 29346494 [TBL] [Abstract][Full Text] [Related]
5. A Genome-Wide Association Study for Susceptibility to Visual Experience-Induced Myopia. Huang Y; Kee CS; Hocking PM; Williams C; Yip SP; Guggenheim JA; Invest Ophthalmol Vis Sci; 2019 Feb; 60(2):559-569. PubMed ID: 30721303 [TBL] [Abstract][Full Text] [Related]
6. Genetic Variants Associated With Human Eye Size Are Distinct From Those Conferring Susceptibility to Myopia. Plotnikov D; Cui J; Clark R; Wedenoja J; Pärssinen O; Tideman JWL; Jonas JB; Wang Y; Rudan I; Young TL; Mackey DA; Terry L; Williams C; Guggenheim JA; Invest Ophthalmol Vis Sci; 2021 Oct; 62(13):24. PubMed ID: 34698770 [TBL] [Abstract][Full Text] [Related]
7. Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease. Dumitriu A; Golji J; Labadorf AT; Gao B; Beach TG; Myers RH; Longo KA; Latourelle JC BMC Med Genomics; 2016 Jan; 9():5. PubMed ID: 26793951 [TBL] [Abstract][Full Text] [Related]
8. INVOLVEMENT OF MULTIPLE MOLECULAR PATHWAYS IN THE GENETICS OF OCULAR REFRACTION AND MYOPIA. Wojciechowski R; Cheng CY Retina; 2018 Jan; 38(1):91-101. PubMed ID: 28406858 [TBL] [Abstract][Full Text] [Related]
9. [Advances in genome-wide association study of myopia]. Liao X; Lan CJ Zhonghua Yan Ke Za Zhi; 2016 Oct; 52(10):794-800. PubMed ID: 27760653 [TBL] [Abstract][Full Text] [Related]
10. Analysis of genetic networks regulating refractive eye development in collaborative cross progenitor strain mice reveals new genes and pathways underlying human myopia. Tkatchenko TV; Shah RL; Nagasaki T; Tkatchenko AV BMC Med Genomics; 2019 Jul; 12(1):113. PubMed ID: 31362747 [TBL] [Abstract][Full Text] [Related]
11. Post-GWAS screening of candidate genes for refractive error in mutant zebrafish models. Quint WH; Tadema KCD; Kokke NCCJ; Meester-Smoor MA; Miller AC; Willemsen R; Klaver CCW; Iglesias AI Sci Rep; 2023 Feb; 13(1):2017. PubMed ID: 36737489 [TBL] [Abstract][Full Text] [Related]
12. Non-additive (dominance) effects of genetic variants associated with refractive error and myopia. Pozarickij A; Williams C; Guggenheim JA; Mol Genet Genomics; 2020 Jul; 295(4):843-853. PubMed ID: 32227305 [TBL] [Abstract][Full Text] [Related]
13. Genome-wide association studies of refractive error and myopia, lessons learned, and implications for the future. Hysi PG; Wojciechowski R; Rahi JS; Hammond CJ Invest Ophthalmol Vis Sci; 2014 May; 55(5):3344-51. PubMed ID: 24876304 [TBL] [Abstract][Full Text] [Related]
14. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Hysi PG; Choquet H; Khawaja AP; Wojciechowski R; Tedja MS; Yin J; Simcoe MJ; Patasova K; Mahroo OA; Thai KK; Cumberland PM; Melles RB; Verhoeven VJM; Vitart V; Segre A; Stone RA; Wareham N; Hewitt AW; Mackey DA; Klaver CCW; MacGregor S; ; Khaw PT; Foster PJ; ; Guggenheim JA; ; Rahi JS; Jorgenson E; Hammond CJ Nat Genet; 2020 Apr; 52(4):401-407. PubMed ID: 32231278 [TBL] [Abstract][Full Text] [Related]
15. When do myopia genes have their effect? Comparison of genetic risks between children and adults. Tideman JW; Fan Q; Polling JR; Guo X; Yazar S; Khawaja A; Höhn R; Lu Y; Jaddoe VW; Yamashiro K; Yoshikawa M; Gerhold-Ay A; Nickels S; Zeller T; He M; Boutin T; Bencic G; Vitart V; Mackey DA; Foster PJ; MacGregor S; Williams C; Saw SM; Guggenheim JA; Klaver CC; Genet Epidemiol; 2016 Dec; 40(8):756-766. PubMed ID: 27611182 [TBL] [Abstract][Full Text] [Related]
16. Combination analysis of genome-wide association and transcriptome sequencing of residual feed intake in quality chickens. Xu Z; Ji C; Zhang Y; Zhang Z; Nie Q; Xu J; Zhang D; Zhang X BMC Genomics; 2016 Aug; 17():594. PubMed ID: 27506765 [TBL] [Abstract][Full Text] [Related]
18. Comprehensive replication of the relationship between myopia-related genes and refractive errors in a large Japanese cohort. Yoshikawa M; Yamashiro K; Miyake M; Oishi M; Akagi-Kurashige Y; Kumagai K; Nakata I; Nakanishi H; Oishi A; Gotoh N; Yamada R; Matsuda F; Yoshimura N; Invest Ophthalmol Vis Sci; 2014 Oct; 55(11):7343-54. PubMed ID: 25335978 [TBL] [Abstract][Full Text] [Related]
19. Common and distinguishing genetic factors for substance use behavior and disorder: an integrated analysis of genomic and transcriptomic studies from both human and animal studies. Chang XW; Sun Y; Muhai JN; Li YY; Chen Y; Lu L; Chang SH; Shi J Addiction; 2022 Sep; 117(9):2515-2529. PubMed ID: 35491750 [TBL] [Abstract][Full Text] [Related]
20. Cocaine'omics: Genome-wide and transcriptome-wide analyses provide biological insight into cocaine use and dependence. Huggett SB; Stallings MC Addict Biol; 2020 Mar; 25(2):e12719. PubMed ID: 30734435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]