BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28135629)

  • 1. Functionalized white graphene - Copper oxide nanocomposite: Synthesis, characterization and application as catalyst for thermal decomposition of ammonium perchlorate.
    Paulose S; Raghavan R; George BK
    J Colloid Interface Sci; 2017 May; 494():64-73. PubMed ID: 28135629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate.
    Huang C; Liu Q; Fan W; Qiu X
    Sci Rep; 2015 Nov; 5():16736. PubMed ID: 26567862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Growth of CuO Nanorods on Graphitic Carbon Nitride with Synergistic Effect on Thermal Decomposition of Ammonium Perchlorate.
    Tan L; Xu J; Li S; Li D; Dai Y; Kou B; Chen Y
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Facile Method to Construct MXene/CuO Nanocomposite with Enhanced Catalytic Activity of CuO on Thermal Decomposition of Ammonium Perchlorate.
    Zhao H; Lv J; Sang J; Zhu L; Zheng P; Andrew GL; Tan L
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30518073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing Sheet-On-Sheet Structured Graphitic Carbon Nitride/Reduced Graphene Oxide/Layered MnO₂ Ternary Nanocomposite with Outstanding Catalytic Properties on Thermal Decomposition of Ammonium Perchlorate.
    Xu J; Li D; Chen Y; Tan L; Kou B; Wan F; Jiang W; Li F
    Nanomaterials (Basel); 2017 Dec; 7(12):. PubMed ID: 29244721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TiO
    Zhao J; Deng N
    Front Chem; 2022; 10():947052. PubMed ID: 35936082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Nanostructured Interfaces of Hexagonal Boron Nitride-Based Materials for Enhanced Catalysis.
    Chen H; Jiang DE; Yang Z; Dai S
    Acc Chem Res; 2023 Jan; 56(1):52-65. PubMed ID: 36378327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalyst Proximity-Induced Functionalization of h-BN with Quat Derivatives.
    Hemmi A; Cun H; Tocci G; Epprecht A; Stel B; Lingenfelder M; de Lima LH; Muntwiler M; Osterwalder J; Iannuzzi M; Greber T
    Nano Lett; 2019 Sep; 19(9):5998-6004. PubMed ID: 31408608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel
    Ríos PL; Povea P; Cerda-Cavieres C; Arroyo JL; Morales-Verdejo C; Abarca G; Camarada MB
    RSC Adv; 2019 Mar; 9(15):8480-8489. PubMed ID: 35518654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antiexfoliating h-BN⊃In
    Cao L; Yan P; Wen S; Bao W; Jiang Y; Zhang Q; Yu N; Zhang Y; Cao K; Dai P; Xie J
    J Am Chem Soc; 2023 Mar; 145(11):6184-6193. PubMed ID: 36893194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High temperature thermal management with boron nitride nanosheets.
    Wang Y; Xu L; Yang Z; Xie H; Jiang P; Dai J; Luo W; Yao Y; Hitz E; Yang R; Yang B; Hu L
    Nanoscale; 2017 Dec; 10(1):167-173. PubMed ID: 29199302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward wafer-scale, high-performance devices.
    Bresnehan MS; Hollander MJ; Wetherington M; LaBella M; Trumbull KA; Cavalero R; Snyder DW; Robinson JA
    ACS Nano; 2012 Jun; 6(6):5234-41. PubMed ID: 22545808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Thermal Conductivity of Silicone Composites Filled with Few-Layered Hexagonal Boron Nitride.
    Cheng WC; Hsieh YT; Liu WR
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32932683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexagonal Boron Nitride Functionalized with Au Nanoparticles-Properties and Potential Biological Applications.
    Jedrzejczak-Silicka M; Trukawka M; Dudziak M; Piotrowska K; Mijowska E
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30096857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene Oxide/Fe
    Pei J; Zhao H; Yang F; Yan D
    Langmuir; 2021 May; 37(20):6132-6138. PubMed ID: 33980010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Gas Exfoliation of Boron Nitride into Few-Layered Nanosheets.
    Zhu W; Gao X; Li Q; Li H; Chao Y; Li M; Mahurin SM; Li H; Zhu H; Dai S
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10766-70. PubMed ID: 27444210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large Reduction of Hot Spot Temperature in Graphene Electronic Devices with Heat-Spreading Hexagonal Boron Nitride.
    Choi D; Poudel N; Park S; Akinwande D; Cronin SB; Watanabe K; Taniguchi T; Yao Z; Shi L
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11101-11107. PubMed ID: 29528211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices.
    Kim KK; Hsu A; Jia X; Kim SM; Shi Y; Dresselhaus M; Palacios T; Kong J
    ACS Nano; 2012 Oct; 6(10):8583-90. PubMed ID: 22970651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable Fabrication of Tungsten Oxide Nanoparticles Confined in Graphene-Analogous Boron Nitride as an Efficient Desulfurization Catalyst.
    Wu P; Zhu W; Wei A; Dai B; Chao Y; Li C; Li H; Dai S
    Chemistry; 2015 Oct; 21(43):15421-7. PubMed ID: 26350466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.