BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28135681)

  • 21. Development of phosphorus recovery reactor for enlargement of struvite crystals using seawater as the magnesium source.
    Wongphudphad P; Kemacheevakul P
    Water Sci Technol; 2019 Apr; 79(7):1376-1386. PubMed ID: 31123237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recovery of phosphorous from swine wastewater through crystallization.
    Suzuki K; Tanaka Y; Kuroda K; Hanajima D; Fukumoto Y
    Bioresour Technol; 2005 Sep; 96(14):1544-50. PubMed ID: 15978986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal decomposition of struvite and its phase transition.
    Bhuiyan MI; Mavinic DS; Koch FA
    Chemosphere; 2008 Feb; 70(8):1347-56. PubMed ID: 18022212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovering struvite from livestock wastewater by fluidized-bed homogeneous crystallization as a pre-treatment process to sludge co-digestion.
    Hsiao CT; Huang TH; Lacson CFZ; Vilando AC; Lu MC
    Environ Res; 2023 Oct; 235():116639. PubMed ID: 37453510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process.
    Hutnik N; Kozik A; Mazienczuk A; Piotrowski K; Wierzbowska B; Matynia A
    Water Res; 2013 Jul; 47(11):3635-43. PubMed ID: 23726699
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.
    Cusick RD; Ullery ML; Dempsey BA; Logan BE
    Water Res; 2014 May; 54():297-306. PubMed ID: 24583521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphate recovery from greenhouse wastewater.
    Yi WG; Lo KV
    J Environ Sci Health B; 2003 Jul; 38(4):501-9. PubMed ID: 12856931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of humic substances on phosphorus removal by struvite precipitation.
    Zhou Z; Hu D; Ren W; Zhao Y; Jiang LM; Wang L
    Chemosphere; 2015 Dec; 141():94-9. PubMed ID: 26151483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An overview of technologies to recover phosphorus as struvite from wastewater: advantages and shortcomings.
    Ghosh S; Lobanov S; Lo VK
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19063-19077. PubMed ID: 31102218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of pH on precipitate composition during phosphorus recovery as struvite from swine wastewater].
    Bao XD; Ye ZL; Ma JH; Chen SH; Lin LF; Yan YJ
    Huan Jing Ke Xue; 2011 Sep; 32(9):2598-603. PubMed ID: 22165227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Struvite crystallization under a marine/brackish aquaculture condition.
    Zhang X; Hu J; Spanjers H; van Lier JB
    Bioresour Technol; 2016 Oct; 218():1151-6. PubMed ID: 27469096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorus recovery by struvite crystallization in WWTPs: influence of the sludge treatment line operation.
    Martí N; Pastor L; Bouzas A; Ferrer J; Seco A
    Water Res; 2010 Apr; 44(7):2371-9. PubMed ID: 20089291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement of struvite pellets crystallization in a full-scale plant using an industrial grade magnesium product.
    Crutchik D; Morales N; Vázquez-Padín JR; Garrido JM
    Water Sci Technol; 2017 Feb; 75(3-4):609-618. PubMed ID: 28192355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the crystallization of magnesium ammonium phosphate for phosphorus recovery.
    Wang J; Song Y; Yuan P; Peng J; Fan M
    Chemosphere; 2006 Nov; 65(7):1182-7. PubMed ID: 16684557
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Auto-nucleation and crystal growth of struvite in a demonstrative fluidized bed reactor (FBR).
    Battistoni P; Boccadoro R; Fatone F; Pavan P
    Environ Technol; 2005 Sep; 26(9):975-82. PubMed ID: 16196406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of a seeder reactor to manage crystal growth in the fluidized bed reactor for phosphorus recovery.
    Shimamura K; Ishikawa H; Tanaka T; Hirasawa I
    Water Environ Res; 2007 Apr; 79(4):406-13. PubMed ID: 17489275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants.
    Zhang DM; Chen YX; Jilani G; Wu WX; Liu WL; Han ZY
    Bioresour Technol; 2012 Jul; 116():386-95. PubMed ID: 22537401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions.
    Tansel B; Lunn G; Monje O
    Chemosphere; 2018 Mar; 194():504-514. PubMed ID: 29241124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new approach to removing and recovering phosphorus from livestock wastewater using dolomite.
    Yin Z; Chen Q; Zhao C; Fu Y; Li J; Feng Y; Li L
    Chemosphere; 2020 Sep; 255():127005. PubMed ID: 32416395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comprehensive review of phosphorus recovery from wastewater by crystallization processes.
    Peng L; Dai H; Wu Y; Peng Y; Lu X
    Chemosphere; 2018 Apr; 197():768-781. PubMed ID: 29407841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.