These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 28136094)

  • 1. The Behavior of Weakly Electric Fish (Sternarchus Albifrons) in Magnetic Fields.
    Werber M; Sparks RM; Goetz AC
    J Gen Psychol; 1972 Jan; 86(1):3-13. PubMed ID: 28136094
    [No Abstract]   [Full Text] [Related]  

  • 2. Electroreceptor mechanisms in a high-frequency weakly electric fish, Sternarchus albifrons.
    Hagiwara S; Szabo T; Enger PS
    J Neurophysiol; 1965 Sep; 28(5):784-99. PubMed ID: 5867879
    [No Abstract]   [Full Text] [Related]  

  • 3. Cell types and synaptic organization of the medullary electromotor nucleus in a constant frequency weakly electric fish, Sternarchus albifrons.
    Tokunaga A; Akert K; Sandri C; Bennett MV
    J Comp Neurol; 1980 Aug; 192(3):407-26. PubMed ID: 7419738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regeneration of spinal neurons in inframammalian vertebrates: morphological and developmental aspects.
    Anderson MJ; Waxman SG
    J Hirnforsch; 1983; 24(4):371-98. PubMed ID: 6643991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caudal spinal cord of the teleost Sternarchus albifrons resembles regenerating cord.
    Anderson MJ; Waxman SG
    Anat Rec; 1983 Jan; 205(1):85-92. PubMed ID: 6837938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single unit activity in the mesencephalon of Sternarchus.
    Schlegel P
    J Physiol (Paris); 1979; 75(4):421-8. PubMed ID: 512974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex and species differences in neuromodulatory input to a premotor nucleus: a comparative study of substance P and communication behavior in weakly electric fish.
    Kolodziejski JA; Nelson BS; Smith GT
    J Neurobiol; 2005 Feb; 62(3):299-315. PubMed ID: 15515000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential projections of ordinary lateral line receptors and electroreceptors in the gymnotid fish, Apteronotus (Sternarchus) albifrons.
    Maler L; Finger T; Karten HJ
    J Comp Neurol; 1974 Dec; 158(4):363-82. PubMed ID: 4448859
    [No Abstract]   [Full Text] [Related]  

  • 9. Glial fibrillary acidic protein in regenerating teleost spinal cord.
    Anderson MJ; Swanson KA; Waxman SG; Eng LF
    J Histochem Cytochem; 1984 Oct; 32(10):1099-106. PubMed ID: 6481149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual Capability of the Weakly Electric Fish Apteronotus albifrons as Revealed by a Modified Retinal Flat-Mount Method.
    Takiyama T; Luna da Silva V; Moura Silva D; Hamasaki S; Yoshida M
    Brain Behav Evol; 2015; 86(2):122-30. PubMed ID: 26346851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus frequency differentially affects chirping in two species of weakly electric fish: implications for the evolution of signal structure and function.
    Kolodziejski JA; Sanford SE; Smith GT
    J Exp Biol; 2007 Jul; 210(Pt 14):2501-9. PubMed ID: 17601954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling of electric imaging in weakly electric fish: insights for physiology, behavior and evolution.
    Gómez-Sena L; Pedraja F; Sanguinetti-Scheck JI; Budelli R
    J Physiol Paris; 2014; 108(2-3):112-28. PubMed ID: 25245199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine structure of regenerated ependyma and spinal cord in Sternarchus albifrons.
    Anderson MJ; Waxman SG; Laufer M
    Anat Rec; 1983 Jan; 205(1):73-83. PubMed ID: 6837937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling electrosensory and mechanosensory images during the predatory behavior of weakly electric fish.
    Nelson ME; MacIver MA; Coombs S
    Brain Behav Evol; 2002; 59(4):199-210. PubMed ID: 12138340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptive fields of cerebellar cells receiving exteroceptive input in a Gymnotid fish.
    Bastian J
    J Neurophysiol; 1975 Mar; 38(2):285-300. PubMed ID: 165269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity in the structure of electrocommunication signals within a genus of electric fish, Apteronotus.
    Dunlap KD; Larkins-Ford J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):153-61. PubMed ID: 12607044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Social interactions between live and artificial weakly electric fish: Electrocommunication and locomotor behavior of Mormyrus rume proboscirostris towards a mobile dummy fish.
    Worm M; Kirschbaum F; von der Emde G
    PLoS One; 2017; 12(9):e0184622. PubMed ID: 28902915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric field interactions in pairs of electric fish: modeling and mimicking naturalistic inputs.
    Kelly M; Babineau D; Longtin A; Lewis JE
    Biol Cybern; 2008 Jun; 98(6):479-90. PubMed ID: 18491161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric interactions through chirping behavior in the weakly electric fish, Apteronotus leptorhynchus.
    Zupanc GK; Sîrbulescu RF; Nichols A; Ilies I
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Feb; 192(2):159-73. PubMed ID: 16247622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-locking behavior in a high-frequency gymnotiform weakly electric fish, Adontosternarchus.
    Kawasaki M; Leonard J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Feb; 203(2):151-162. PubMed ID: 28190119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.