BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 28137286)

  • 1. Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts.
    Paulsen J; Sekelja M; Oldenburg AR; Barateau A; Briand N; Delbarre E; Shah A; Sørensen AL; Vigouroux C; Buendia B; Collas P
    Genome Biol; 2017 Jan; 18(1):21. PubMed ID: 28137286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational 3D genome modeling using Chrom3D.
    Paulsen J; Liyakat Ali TM; Collas P
    Nat Protoc; 2018 May; 13(5):1137-1152. PubMed ID: 29700484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the 3D Genome Using Hi-C and Nuclear Lamin-Genome Contacts.
    Paulsen J; Collas P
    Methods Mol Biol; 2022; 2301():337-352. PubMed ID: 34415545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation.
    Briand N; Collas P
    Nucleus; 2018 Jan; 9(1):216-226. PubMed ID: 29517398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamins Organize the Global Three-Dimensional Genome from the Nuclear Periphery.
    Zheng X; Hu J; Yue S; Kristiani L; Kim M; Sauria M; Taylor J; Kim Y; Zheng Y
    Mol Cell; 2018 Sep; 71(5):802-815.e7. PubMed ID: 30201095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation.
    Paulsen J; Liyakat Ali TM; Nekrasov M; Delbarre E; Baudement MO; Kurscheid S; Tremethick D; Collas P
    Nat Genet; 2019 May; 51(5):835-843. PubMed ID: 31011212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay of lamin A and lamin B LADs on the radial positioning of chromatin.
    Forsberg F; Brunet A; Ali TML; Collas P
    Nucleus; 2019 Dec; 10(1):7-20. PubMed ID: 30663495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of lamins in 3D genome organization and global gene expression.
    Kim Y; Zheng X; Zheng Y
    Nucleus; 2019 Dec; 10(1):33-41. PubMed ID: 30755082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SpectralTAD: an R package for defining a hierarchy of topologically associated domains using spectral clustering.
    Cresswell KG; Stansfield JC; Dozmorov MG
    BMC Bioinformatics; 2020 Jul; 21(1):319. PubMed ID: 32689928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin.
    Lund EG; Duband-Goulet I; Oldenburg A; Buendia B; Collas P
    Nucleus; 2015; 6(1):30-9. PubMed ID: 25602132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong interactions between highly dynamic lamina-associated domains and the nuclear envelope stabilize the 3D architecture of Drosophila interphase chromatin.
    Tolokh IS; Kinney NA; Sharakhov IV; Onufriev AV
    Epigenetics Chromatin; 2023 May; 16(1):21. PubMed ID: 37254161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finding Friends in the Crowd: Three-Dimensional Cliques of Topological Genomic Domains.
    Collas P; Liyakat Ali TM; Brunet A; Germier T
    Front Genet; 2019; 10():602. PubMed ID: 31275364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells.
    Chang L; Li M; Shao S; Li C; Ai S; Xue B; Hou Y; Zhang Y; Li R; Fan X; He A; Li C; Sun Y
    Protein Cell; 2022 Apr; 13(4):258-280. PubMed ID: 33155082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 3D Genome: From Structure to Function.
    Mohanta TK; Mishra AK; Al-Harrasi A
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for the Analysis of Topologically Associating Domains (TADs).
    Zufferey M; Tavernari D; Ciriello G
    Methods Mol Biol; 2022; 2301():39-59. PubMed ID: 34415530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions.
    Yan KK; Lou S; Gerstein M
    PLoS Comput Biol; 2017 Jul; 13(7):e1005647. PubMed ID: 28742097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attach and stretch: Emerging roles for genome-lamina contacts in shaping the 3D genome.
    Rullens PMJ; Kind J
    Curr Opin Cell Biol; 2021 Jun; 70():51-57. PubMed ID: 33360765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of computational methods for 3D genome analysis at single-cell Hi-C level.
    Li X; An Z; Zhang Z
    Methods; 2020 Oct; 181-182():52-61. PubMed ID: 31445093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HiTAD: detecting the structural and functional hierarchies of topologically associating domains from chromatin interactions.
    Wang XT; Cui W; Peng C
    Nucleic Acids Res; 2017 Nov; 45(19):e163. PubMed ID: 28977529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.