These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 28137568)

  • 1. Drug Target Identification Using an iTRAQ-Based Quantitative Chemical Proteomics Approach-Based on a Target Profiling Study of Andrographolide.
    Wang J; Wong YK; Zhang J; Lee YM; Hua ZC; Shen HM; Lin Q
    Methods Enzymol; 2017; 586():291-309. PubMed ID: 28137568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target Profiling of an Anticancer Drug Curcumin by an In Situ Chemical Proteomics Approach.
    Liu DD; Zou C; Zhang J; Gao P; Zhu Y; Meng Y; Ma N; Lv M; Xu C; Lin Q; Wang J
    Methods Mol Biol; 2021; 2213():147-161. PubMed ID: 33270200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy.
    Wang J; Zhang J; Lee YM; Koh PL; Ng S; Bao F; Lin Q; Shen HM
    Autophagy; 2016 Oct; 12(10):1931-1944. PubMed ID: 27463841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic Profiling of De Novo Protein Synthesis in Starvation-Induced Autophagy Using Bioorthogonal Noncanonical Amino Acid Tagging.
    Zhang J; Wang J; Lee YM; Lim TK; Lin Q; Shen HM
    Methods Enzymol; 2017; 588():41-59. PubMed ID: 28237112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small Molecule Interactome Mapping by Photo-Affinity Labeling (SIM-PAL) to Identify Binding Sites of Small Molecules on a Proteome-Wide Scale.
    Flaxman HA; Miyamoto DK; Woo CM
    Curr Protoc Chem Biol; 2019 Dec; 11(4):e75. PubMed ID: 31763793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative chemical proteomics approach to profile the specific cellular targets of andrographolide, a promising anticancer agent that suppresses tumor metastasis.
    Wang J; Tan XF; Nguyen VS; Yang P; Zhou J; Gao M; Li Z; Lim TK; He Y; Ong CS; Lay Y; Zhang J; Zhu G; Lai SL; Ghosh D; Mok YK; Shen HM; Lin Q
    Mol Cell Proteomics; 2014 Mar; 13(3):876-86. PubMed ID: 24445406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-Based Protein Profiling in Plants.
    Vélez-Bermúdez IC; Wen TN; Lan P; Schmidt W
    Methods Mol Biol; 2016; 1450():213-21. PubMed ID: 27424757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-based proteome profiling using an affinity-based probe (AfBP) derived from 3-deazaneplanocin A (DzNep).
    Tam EK; Li Z; Goh YL; Cheng X; Wong SY; Santhanakrishnan S; Chai CL; Yao SQ
    Chem Asian J; 2013 Aug; 8(8):1818-28. PubMed ID: 23749335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting the iTRAQ Data Analysis.
    Aggarwal S; Yadav AK
    Methods Mol Biol; 2016; 1362():277-91. PubMed ID: 26519184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two Birds with One Stone: Parallel Quantification of Proteome and Phosphoproteome Using iTRAQ.
    Solari FA; Kollipara L; Sickmann A; Zahedi RP
    Methods Mol Biol; 2016; 1394():25-41. PubMed ID: 26700039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches.
    Wang J; Gao L; Lee YM; Kalesh KA; Ong YS; Lim J; Jee JE; Sun H; Lee SS; Hua ZC; Lin Q
    Pharmacol Ther; 2016 Jun; 162():10-22. PubMed ID: 26808165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isobaric labeling and data normalization without requiring protein quantitation.
    Kim PD; Patel BB; Yeung AT
    J Biomol Tech; 2012 Apr; 23(1):11-23. PubMed ID: 22468137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Profiling the Protein Targets of Unmodified Bio-Active Molecules with Drug Affinity Responsive Target Stability and Liquid Chromatography/Tandem Mass Spectrometry.
    Hwang HY; Kim TY; Szász MA; Dome B; Malm J; Marko-Varga G; Kwon HJ
    Proteomics; 2020 May; 20(9):e1900325. PubMed ID: 31926115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of two isobaric labeling tags, DiART and iTRAQ.
    Chen Z; Wang Q; Lin L; Tang Q; Edwards JL; Li S; Liu S
    Anal Chem; 2012 Mar; 84(6):2908-15. PubMed ID: 22404494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics.
    Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG
    Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iTRAQ-Based Shotgun Proteomics Approach for Relative Protein Quantification.
    Núñez EV; Domont GB; Nogueira FCS
    Methods Mol Biol; 2017; 1546():267-274. PubMed ID: 27896776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research.
    Wiese S; Reidegeld KA; Meyer HE; Warscheid B
    Proteomics; 2007 Feb; 7(3):340-50. PubMed ID: 17177251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of iTRAQ Shotgun Proteomics for Measurement of Brain Proteins in Studies of Psychiatric Disorders.
    Núñez EV; Guest PC; Martins-de-Souza D; Domont GB; Nogueira FC
    Adv Exp Med Biol; 2017; 974():219-227. PubMed ID: 28353239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.
    Gritsenko MA; Xu Z; Liu T; Smith RD
    Methods Mol Biol; 2016; 1410():237-47. PubMed ID: 26867748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic Profiling of Protein Kinase Inhibitor Targets by Mass Spectrometry.
    Golkowski M; Maly DJ; Ong SE
    Methods Mol Biol; 2017; 1636():105-117. PubMed ID: 28730476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.