BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28137627)

  • 1. Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system.
    Aksoy M; Maclaren J; Bammer R
    Magn Reson Imaging; 2017 Jun; 39():44-52. PubMed ID: 28137627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudocontinuous arterial spin labeling with prospective motion correction (PCASL-PROMO).
    Zun Z; Shankaranarayanan A; Zaharchuk G
    Magn Reson Med; 2014 Oct; 72(4):1049-56. PubMed ID: 24243585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced distortion artifact whole brain CBF mapping using blip-reversed non-segmented 3D echo planar imaging with pseudo-continuous arterial spin labeling.
    Gai ND; Chou YY; Pham D; Butman JA
    Magn Reson Imaging; 2017 Dec; 44():119-124. PubMed ID: 28867670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marker-free optical stereo motion tracking for in-bore MRI and PET-MRI application.
    Kyme AZ; Aksoy M; Henry DL; Bammer R; Maclaren J
    Med Phys; 2020 Aug; 47(8):3321-3331. PubMed ID: 32329076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion-corrected 3D-EPTI with efficient 4D navigator acquisition for fast and robust whole-brain quantitative imaging.
    Dong Z; Wang F; Setsompop K
    Magn Reson Med; 2022 Sep; 88(3):1112-1125. PubMed ID: 35481604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical tracking with two markers for robust prospective motion correction for brain imaging.
    Singh A; Zahneisen B; Keating B; Herbst M; Chang L; Zaitsev M; Ernst T
    MAGMA; 2015 Dec; 28(6):523-34. PubMed ID: 26121941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of brain perfusion in newborns: pulsed arterial spin labeling (PASL) versus pseudo-continuous arterial spin labeling (pCASL).
    Boudes E; Gilbert G; Leppert IR; Tan X; Pike GB; Saint-Martin C; Wintermark P
    Neuroimage Clin; 2014; 6():126-33. PubMed ID: 25379424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PROMO: Real-time prospective motion correction in MRI using image-based tracking.
    White N; Roddey C; Shankaranarayanan A; Han E; Rettmann D; Santos J; Kuperman J; Dale A
    Magn Reson Med; 2010 Jan; 63(1):91-105. PubMed ID: 20027635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospective motion correction and selective reacquisition using volumetric navigators for vessel-encoded arterial spin labeling dynamic angiography.
    Frost R; Hess AT; Okell TW; Chappell MA; Tisdall MD; van der Kouwe AJ; Jezzard P
    Magn Reson Med; 2016 Nov; 76(5):1420-1430. PubMed ID: 26567122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse retrospective motion correction.
    Zahneisen B; Keating B; Singh A; Herbst M; Ernst T
    Magn Reson Med; 2016 Jun; 75(6):2341-9. PubMed ID: 26140504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective motion correction in 2D multishot MRI using EPI navigators and multislice-to-volume image registration.
    Hoinkiss DC; Porter DA
    Magn Reson Med; 2017 Dec; 78(6):2127-2135. PubMed ID: 28983957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective Motion Correction for Brain MRI Using an External Tracking System.
    Nael K; Pawha PS; Fleysher L; George K; Stueben J; Roas-Loeffler M; Delman BN; Fayad ZA
    J Neuroimaging; 2021 Jan; 31(1):57-61. PubMed ID: 33146946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collapsed fat navigators for brain 3D rigid body motion.
    Engström M; Mårtensson M; Avventi E; Norbeck O; Skare S
    Magn Reson Imaging; 2015 Oct; 33(8):984-91. PubMed ID: 26117701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproducibility of multiphase pseudo-continuous arterial spin labeling and the effect of post-processing analysis methods.
    Fazlollahi A; Bourgeat P; Liang X; Meriaudeau F; Connelly A; Salvado O; Calamante F
    Neuroimage; 2015 Aug; 117():191-201. PubMed ID: 26026814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time correction by optical tracking with integrated geometric distortion correction for reducing motion artifacts in functional MRI.
    Rotenberg D; Chiew M; Ranieri S; Tam F; Chopra R; Graham SJ
    Magn Reson Med; 2013 Mar; 69(3):734-48. PubMed ID: 22585554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T
    Norbeck O; van Niekerk A; Avventi E; Rydén H; Berglund J; Sprenger T; Skare S
    Magn Reson Med; 2021 Feb; 85(2):868-882. PubMed ID: 32871026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of cerebral blood flow using multi-phase pseudo continuous arterial spin labeling at 3-tesla.
    Sugimori H; Fujima N; Suzuki Y; Hamaguchi H; Sakata M; Kudo K
    Magn Reson Imaging; 2015 Dec; 33(10):1338-1344. PubMed ID: 26260545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.
    Todd N; Josephs O; Callaghan MF; Lutti A; Weiskopf N
    Neuroimage; 2015 Jun; 113():1-12. PubMed ID: 25783205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigator-based slice tracking for kidney pCASL using spin-echo EPI acquisition.
    Zhang K; Triphan SMF; Ziener CH; Jende JME; Kauczor HU; Schlemmer HP; Sedlaczek O; Kurz FT
    Magn Reson Med; 2023 Jul; 90(1):231-239. PubMed ID: 36806110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A within-coil optical prospective motion-correction system for brain imaging at 7T.
    DiGiacomo P; Maclaren J; Aksoy M; Tong E; Carlson M; Lanzman B; Hashmi S; Watkins R; Rosenberg J; Burns B; Skloss TW; Rettmann D; Rutt B; Bammer R; Zeineh M
    Magn Reson Med; 2020 Sep; 84(3):1661-1671. PubMed ID: 32077521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.