BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28137645)

  • 1. How can nanoparticles contribute to antituberculosis therapy?
    Costa-Gouveia J; Aínsa JA; Brodin P; Lucía A
    Drug Discov Today; 2017 Mar; 22(3):600-607. PubMed ID: 28137645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic Antibacterial Activity of Nanoparticles Made of β-Cyclodextrins Potentiates Their Effect as Drug Nanocarriers against Tuberculosis.
    Machelart A; Salzano G; Li X; Demars A; Debrie AS; Menendez-Miranda M; Pancani E; Jouny S; Hoffmann E; Deboosere N; Belhaouane I; Rouanet C; Simar S; Talahari S; Giannini V; Villemagne B; Flipo M; Brosch R; Nesslany F; Deprez B; Muraille E; Locht C; Baulard AR; Willand N; Majlessi L; Gref R; Brodin P
    ACS Nano; 2019 Apr; 13(4):3992-4007. PubMed ID: 30822386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oral therapy using nanoparticle-encapsulated antituberculosis drugs in guinea pigs infected with Mycobacterium tuberculosis.
    Johnson CM; Pandey R; Sharma S; Khuller GK; Basaraba RJ; Orme IM; Lenaerts AJ
    Antimicrob Agents Chemother; 2005 Oct; 49(10):4335-8. PubMed ID: 16189115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-carriers for the Treatment of Tuberculosis.
    Gilani SJ; Ameeduzzafar ; Jafar M; Shakil K; Imam SS
    Recent Pat Antiinfect Drug Discov; 2017; 12(2):95-106. PubMed ID: 28595544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis.
    Sharma A; Sharma S; Khuller GK
    J Antimicrob Chemother; 2004 Oct; 54(4):761-6. PubMed ID: 15329364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of spray-dried porous nanoaggregates for pulmonary delivery of anti-tubercular drugs.
    Kaur R; Garg T; Malik B; Gupta UD; Gupta P; Rath G; Goyal AK
    Drug Deliv; 2016; 23(3):882-7. PubMed ID: 24870203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured Therapeutic Carriers for Tuberculosis Treatment: Approaches & Challenges.
    Ullah Z; Athar MT; Samad A
    Recent Pat Antiinfect Drug Discov; 2017; 12(2):128-137. PubMed ID: 28990537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment.
    Silva JP; Gonçalves C; Costa C; Sousa J; Silva-Gomes R; Castro AG; Pedrosa J; Appelberg R; Gama FM
    J Control Release; 2016 Aug; 235():112-124. PubMed ID: 27261333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanotechnology in Tuberculosis: State of the Art and the Challenges Ahead.
    Grotz E; Tateosian N; Amiano N; Cagel M; Bernabeu E; Chiappetta DA; Moretton MA
    Pharm Res; 2018 Sep; 35(11):213. PubMed ID: 30238168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Nanocarrier-Based Dry Powder Formulations for Inhalation with Special Reference to Anti-Tuberculosis Drugs.
    Patil TS; Deshpande A; Shende PK; Deshpande S; Gaud R
    Crit Rev Ther Drug Carrier Syst; 2019; 36(3):239-276. PubMed ID: 31679248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the tuberculosis drug development pipeline.
    Evangelopoulos D; McHugh TD
    Chem Biol Drug Des; 2015 Nov; 86(5):951-60. PubMed ID: 25772393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Hollow Fiber System Model in the Nonclinical Evaluation of Antituberculosis Drug Regimens.
    Chilukuri D; McMaster O; Bergman K; Colangelo P; Snow K; Toerner JG
    Clin Infect Dis; 2015 Aug; 61 Suppl 1():S32-3. PubMed ID: 26224770
    [No Abstract]   [Full Text] [Related]  

  • 14. Nanoparticle encapsulated lipopeptide conjugate of antitubercular drug isoniazid: in vitro intracellular activity and in vivo efficacy in a Guinea pig model of tuberculosis.
    Horváti K; Bacsa B; Kiss E; Gyulai G; Fodor K; Balka G; Rusvai M; Szabó E; Hudecz F; Bősze S
    Bioconjug Chem; 2014 Dec; 25(12):2260-8. PubMed ID: 25394206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimycobacterial plant terpenoids.
    Cantrell CL; Franzblau SG; Fischer NH
    Planta Med; 2001 Nov; 67(8):685-94. PubMed ID: 11731906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in nanotechnology for diagnosis and treatment of tuberculosis.
    Banyal S; Malik P; Tuli HS; Mukherjee TK
    Curr Opin Pulm Med; 2013 May; 19(3):289-97. PubMed ID: 23429097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuberculosis Resistance and Nanoparticles: Combating the Dual Role of Reactive Oxygen Species in Macrophages for Tuberculosis Management.
    Rauf A; Sohail MF; Sarwar HS; Naveed S; Batool S; Amin U; Ali I; Saleem W; Razzaq S; Rehman M; Shahnaz G
    Crit Rev Ther Drug Carrier Syst; 2020; 37(2):161-182. PubMed ID: 32865904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal carriers: a rising tool for therapy of tuberculosis.
    Gupta S; Kumar P; Gupta MK; Vyas S
    Crit Rev Ther Drug Carrier Syst; 2012; 29(4):299-53. PubMed ID: 22746187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the research of heterocyclic compounds as antitubercular agents.
    Yan M; Ma S
    ChemMedChem; 2012 Dec; 7(12):2063-75. PubMed ID: 23042656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents.
    Keri RS; Sasidhar BS; Nagaraja BM; Santos MA
    Eur J Med Chem; 2015 Jul; 100():257-69. PubMed ID: 26112067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.