These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28137713)

  • 1. HIPred: an integrative approach to predicting haploinsufficient genes.
    Shihab HA; Rogers MF; Campbell C; Gaunt TR
    Bioinformatics; 2017 Jun; 33(12):1751-1757. PubMed ID: 28137713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haploinsufficiency predictions without study bias.
    Steinberg J; Honti F; Meader S; Webber C
    Nucleic Acids Res; 2015 Sep; 43(15):e101. PubMed ID: 26001969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of haploinsufficient genes from epigenomic data using deep forest.
    Yang Y; Li S; Wang Y; Ma Z; Wong KC; Li X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33454736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FATHMM-XF: accurate prediction of pathogenic point mutations via extended features.
    Rogers MF; Shihab HA; Mort M; Cooper DN; Gaunt TR; Campbell C
    Bioinformatics; 2018 Feb; 34(3):511-513. PubMed ID: 28968714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks.
    Avsec Ž; Barekatain M; Cheng J; Gagneur J
    Bioinformatics; 2018 Apr; 34(8):1261-1269. PubMed ID: 29155928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterising and predicting haploinsufficiency in the human genome.
    Huang N; Lee I; Marcotte EM; Hurles ME
    PLoS Genet; 2010 Oct; 6(10):e1001154. PubMed ID: 20976243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEATH: single-individual haplotyping by a probabilistic evolutionary algorithm with toggling.
    Na JC; Lee JC; Rhee JK; Shin SY
    Bioinformatics; 2018 Jun; 34(11):1801-1807. PubMed ID: 29342247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From DNA human sequence to the chromatin higher order organisation and its biological meaning: Using biomolecular interaction networks to understand the influence of structural variation on spatial genome organisation and its functional effect.
    Chiliński M; Sengupta K; Plewczynski D
    Semin Cell Dev Biol; 2022 Jan; 121():171-185. PubMed ID: 34429265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ReliableGenome: annotation of genomic regions with high/low variant calling concordance.
    Popitsch N; ; Schuh A; Taylor JC
    Bioinformatics; 2017 Jan; 33(2):155-160. PubMed ID: 27605105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate and reproducible functional maps in 127 human cell types via 2D genome segmentation.
    Zhang Y; Hardison RC
    Nucleic Acids Res; 2017 Sep; 45(17):9823-9836. PubMed ID: 28973456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GTC: how to maintain huge genotype collections in a compressed form.
    Danek A; Deorowicz S
    Bioinformatics; 2018 Jun; 34(11):1834-1840. PubMed ID: 29351600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative analysis of multiple genomic variables using a hierarchical Bayesian model.
    Schäfer M; Klein HU; Schwender H
    Bioinformatics; 2017 Oct; 33(20):3220-3227. PubMed ID: 28582573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ontology-based method for assessing batch effect adjustment approaches in heterogeneous datasets.
    Schmidt F; List M; Cukuroglu E; Köhler S; Göke J; Schulz MH
    Bioinformatics; 2018 Sep; 34(17):i908-i916. PubMed ID: 30423059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. StereoGene: rapid estimation of genome-wide correlation of continuous or interval feature data.
    Stavrovskaya ED; Niranjan T; Fertig EJ; Wheelan SJ; Favorov AV; Mironov AA
    Bioinformatics; 2017 Oct; 33(20):3158-3165. PubMed ID: 29028265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miniMDS: 3D structural inference from high-resolution Hi-C data.
    Rieber L; Mahony S
    Bioinformatics; 2017 Jul; 33(14):i261-i266. PubMed ID: 28882003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DIRECTION: a machine learning framework for predicting and characterizing DNA methylation and hydroxymethylation in mammalian genomes.
    Pavlovic M; Ray P; Pavlovic K; Kotamarti A; Chen M; Zhang MQ
    Bioinformatics; 2017 Oct; 33(19):2986-2994. PubMed ID: 28505334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting sequence-based features for predicting enhancer-promoter interactions.
    Yang Y; Zhang R; Singh S; Ma J
    Bioinformatics; 2017 Jul; 33(14):i252-i260. PubMed ID: 28881991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the probability of H3K4me3 occupation at a base pair from the genome sequence context.
    Ha M; Hong S; Li WH
    Bioinformatics; 2013 May; 29(9):1199-205. PubMed ID: 23511541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.