These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28137948)

  • 41. The ARL2 GTPase is required for mitochondrial morphology, motility, and maintenance of ATP levels.
    Newman LE; Zhou CJ; Mudigonda S; Mattheyses AL; Paradies E; Marobbio CM; Kahn RA
    PLoS One; 2014; 9(6):e99270. PubMed ID: 24911211
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deacetylated αβ-tubulin acts as a positive regulator of Rheb GTPase through increasing its GTP-loading.
    Lee MN; Koh A; Park D; Jang JH; Kwak D; Jeon H; Kim J; Choi EJ; Jeong H; Suh PG; Ryu SH
    Cell Signal; 2013 Feb; 25(2):539-51. PubMed ID: 23178303
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of a new microtubule-interacting protein Mip-90.
    González M; Cambiazo V; Maccioni RB
    Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757
    [TBL] [Abstract][Full Text] [Related]  

  • 44. BAG6 is a novel microtubule-binding protein that regulates ciliogenesis by modulating the cell cycle and interacting with γ-tubulin.
    He X; Zhang Y; Yang L; Feng J; Yang S; Li T; Zhong T; Li Q; Xie W; Liu M; Zhou J; Li D; Xie S
    Exp Cell Res; 2020 Feb; 387(1):111776. PubMed ID: 31838060
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design, overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants.
    Johnson V; Ayaz P; Huddleston P; Rice LM
    Biochemistry; 2011 Oct; 50(40):8636-44. PubMed ID: 21888381
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of GTP and Pi in wild-type and mutated yeast microtubules: implications for the role of the GTP/GDP-Pi cap in microtubule dynamics.
    Dougherty CA; Himes RH; Wilson L; Farrell KW
    Biochemistry; 1998 Aug; 37(31):10861-5. PubMed ID: 9692978
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tubulin cofactor A gene silencing in mammalian cells induces changes in microtubule cytoskeleton, cell cycle arrest and cell death.
    Nolasco S; Bellido J; Gonçalves J; Zabala JC; Soares H
    FEBS Lett; 2005 Jul; 579(17):3515-24. PubMed ID: 15963512
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CLASP2 recognizes tubulins exposed at the microtubule plus-end in a nucleotide state-sensitive manner.
    Luo W; Demidov V; Shen Q; Girão H; Chakraborty M; Maiorov A; Ataullakhanov FI; Lin C; Maiato H; Grishchuk EL
    Sci Adv; 2023 Jan; 9(1):eabq5404. PubMed ID: 36598991
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel small GTPase subfamily capable of associating with tubulin is required for chromosome segregation.
    Okai T; Araki Y; Tada M; Tateno T; Kontani K; Katada T
    J Cell Sci; 2004 Sep; 117(Pt 20):4705-15. PubMed ID: 15331635
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Arabidopsis tubulin folding cofactor B interacts with alpha-tubulin in vivo.
    Dhonukshe P; Bargmann BO; Gadella TW
    Plant Cell Physiol; 2006 Oct; 47(10):1406-11. PubMed ID: 16928693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tau induces ring and microtubule formation from alphabeta-tubulin dimers under nonassembly conditions.
    Devred F; Barbier P; Douillard S; Monasterio O; Andreu JM; Peyrot V
    Biochemistry; 2004 Aug; 43(32):10520-31. PubMed ID: 15301550
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A chaperone with a hydrophilic surface.
    Cowan NJ; Lewis SA
    Nat Struct Biol; 1999 Nov; 6(11):990-1. PubMed ID: 10542082
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of a novel tubulin-destabilizing protein related to the chaperone cofactor E.
    Bartolini F; Tian G; Piehl M; Cassimeris L; Lewis SA; Cowan NJ
    J Cell Sci; 2005 Mar; 118(Pt 6):1197-207. PubMed ID: 15728251
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microtubule formation from maternal tubulins during sea urchin embryogenesis: measurement of soluble and insoluble tubulin pools.
    Gong ZY; Brandhorst BP
    Mol Reprod Dev; 1988; 1(1):3-9. PubMed ID: 3272152
    [TBL] [Abstract][Full Text] [Related]  

  • 55. From signaling pathways to microtubule dynamics: the key players.
    Etienne-Manneville S
    Curr Opin Cell Biol; 2010 Feb; 22(1):104-11. PubMed ID: 20031384
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules.
    Caplow M; Fee L
    Biochemistry; 2003 Feb; 42(7):2122-6. PubMed ID: 12590601
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CLIP-170/tubulin-curved oligomers coassemble at microtubule ends and promote rescues.
    Arnal I; Heichette C; Diamantopoulos GS; Chrétien D
    Curr Biol; 2004 Dec; 14(23):2086-95. PubMed ID: 15589150
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression and localization of tubulin cofactors TBCD and TBCE in human gametes.
    Jiménez-Moreno V; Agirregoitia E
    Zygote; 2017 Jun; 25(3):304-312. PubMed ID: 28583220
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon.
    Priel A; Tuszynski JA; Woolf NJ
    Eur Biophys J; 2005 Dec; 35(1):40-52. PubMed ID: 16184388
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Suppression of microtubule assembly kinetics by the mitotic protein TPX2.
    Reid TA; Schuster BM; Mann BJ; Balchand SK; Plooster M; McClellan M; Coombes CE; Wadsworth P; Gardner MK
    J Cell Sci; 2016 Apr; 129(7):1319-28. PubMed ID: 26869224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.