BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

585 related articles for article (PubMed ID: 28138156)

  • 1. Antibody-dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells.
    Ochoa MC; Minute L; Rodriguez I; Garasa S; Perez-Ruiz E; Inogés S; Melero I; Berraondo P
    Immunol Cell Biol; 2017 Apr; 95(4):347-355. PubMed ID: 28138156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. V gamma 9 V delta 2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs--rituximab and trastuzumab.
    Tokuyama H; Hagi T; Mattarollo SR; Morley J; Wang Q; So HF; Moriyasu F; Nieda M; Nicol AJ
    Int J Cancer; 2008 Jun; 122(11):2526-34. PubMed ID: 18307255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing tumor-reactive γδ T cells for antibody-based cancer immunotherapy.
    Meraviglia S; Caccamo N; Guggino G; Tolomeo M; Siragusa S; Stassi G; Dieli F
    Curr Mol Med; 2010 Nov; 10(8):719-26. PubMed ID: 20937023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of in vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies - impact of effector cells.
    Chung S; Lin YL; Reed C; Ng C; Cheng ZJ; Malavasi F; Yang J; Quarmby V; Song A
    J Immunol Methods; 2014 May; 407():63-75. PubMed ID: 24704820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of a Recombinant High Affinity IgG Fc Receptor by Engineered NK Cells as a Docking Platform for Therapeutic mAbs to Target Cancer Cells.
    Snyder KM; Hullsiek R; Mishra HK; Mendez DC; Li Y; Rogich A; Kaufman DS; Wu J; Walcheck B
    Front Immunol; 2018; 9():2873. PubMed ID: 30574146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous exposure to FcγR and FcαR on monocytes and macrophages enhances antitumor activity in vivo.
    Li B; Xu L; Tao F; Xie K; Wu Z; Li Y; Li J; Chen K; Pi C; Mendelsohn A; Larrick JW; Gu H; Fang J
    Oncotarget; 2017 Jun; 8(24):39356-39366. PubMed ID: 28454118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of natural killer and natural killer-like T cells derived from ex vivo expanded and activated cord blood mononuclear cells: implications for adoptive cellular immunotherapy.
    Ayello J; van de Ven C; Cairo E; Hochberg J; Baxi L; Satwani P; Cairo MS
    Exp Hematol; 2009 Oct; 37(10):1216-29. PubMed ID: 19638292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges of cancer therapy with natural killer cells.
    Klingemann H
    Cytotherapy; 2015 Mar; 17(3):245-9. PubMed ID: 25533934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro analysis of the proliferative capacity and cytotoxic effects of ex vivo induced natural killer cells, cytokine-induced killer cells, and gamma-delta T cells.
    Niu C; Jin H; Li M; Xu J; Xu D; Hu J; He H; Li W; Cui J
    BMC Immunol; 2015 Oct; 16():61. PubMed ID: 26458364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytokine enhancement of in vitro antibody-dependent cellular cytotoxicity mediated by chimeric anti-GD3 monoclonal antibody KM871.
    Liu Z; Lee FT; Hanai N; Smyth FE; Burgess AW; Old LJ; Scott AM
    Cancer Immun; 2002 Oct; 2():13. PubMed ID: 12747758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The functional activity of Fc gamma RII and Fc gamma RIII on subsets of human lymphocytes.
    Hadley AG; Zupanska B; Kumpel BM; Leader KA
    Immunology; 1992 Jul; 76(3):446-51. PubMed ID: 1356095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC.
    Repp R; Kellner C; Muskulus A; Staudinger M; Nodehi SM; Glorius P; Akramiene D; Dechant M; Fey GH; van Berkel PH; van de Winkel JG; Parren PW; Valerius T; Gramatzki M; Peipp M
    J Immunol Methods; 2011 Oct; 373(1-2):67-78. PubMed ID: 21855548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bispecific killer cell engager with high affinity and specificity toward CD16a on NK cells for cancer immunotherapy.
    Nikkhoi SK; Li G; Eleya S; Yang G; Vandavasi VG; Hatefi A
    Front Immunol; 2022; 13():1039969. PubMed ID: 36685519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy.
    Du SH; Li Z; Chen C; Tan WK; Chi Z; Kwang TW; Xu XH; Wang S
    PLoS One; 2016; 11(9):e0161820. PubMed ID: 27598655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation of natural killer cells to overcome cancer resistance to NK cell-based therapy and to enhance antibody-based immunotherapy.
    Fantini M; Arlen PM; Tsang KY
    Front Immunol; 2023; 14():1275904. PubMed ID: 38077389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved method to quantify human NK cell-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) per IgG FcR-positive NK cell without purification of NK cells.
    Sung AP; Tang JJ; Guglielmo MJ; Redelman D; Smith-Gagen J; Bateman L; Hudig D
    J Immunol Methods; 2018 Jan; 452():63-72. PubMed ID: 29113954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD16+ gammadelta T cells mediate antibody dependent cellular cytotoxicity: potential mechanism in the pathogenesis of multiple sclerosis.
    Chen Z; Freedman MS
    Clin Immunol; 2008 Aug; 128(2):219-27. PubMed ID: 18501678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ex vivo-expanded natural killer cells kill cancer cells more effectively than ex vivo-expanded γδ T cells or αβ T cells.
    Deng X; Terunuma H; Terunuma A; Takane T; Nieda M
    Int Immunopharmacol; 2014 Oct; 22(2):486-91. PubMed ID: 25131561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-affinity CD16-polymorphism and Fc-engineered antibodies enable activity of CD16-chimeric antigen receptor-modified T cells for cancer therapy.
    Rataj F; Jacobi SJ; Stoiber S; Asang F; Ogonek J; Tokarew N; Cadilha BL; van Puijenbroek E; Heise C; Duewell P; Endres S; Klein C; Kobold S
    Br J Cancer; 2019 Jan; 120(1):79-87. PubMed ID: 30429531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting NK-cell checkpoints for cancer immunotherapy.
    Muntasell A; Ochoa MC; Cordeiro L; Berraondo P; López-Díaz de Cerio A; Cabo M; López-Botet M; Melero I
    Curr Opin Immunol; 2017 Apr; 45():73-81. PubMed ID: 28236750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.